• Где расположены болевые рецепторы у человека. Болевые рецепторы: расположение, особенности нервной системы

    Болевые рецепторы (ноцицепторы) реагируют на стимулы, угрожающие организму повреждением. Существуют два основных типа ноцицепторов: Aдельта-механоноцицепторы и полимодальные С-ноцицепторы (есть и еще несколько типов). Как следует из их названия, механоноцицепторы иннервируются тонкими миелинизированными, а полимодальные С-ноцицепторы - немиелинизированными С-волокнами. Aдельта-механоноцицепторы отвечают на сильное механическое раздражение кожи, например, укол иглой или щипок пинцетом. Обычно они не реагируют на термические и химические болевые стимулы, если только не были предварительно сенситизированы . В отличие от них полимодальные С-ноцицепторы реагируют на болевые стимулы разного вида: механические, температурные ( рис. 34.4) и химические.

    Многие годы было непонятно, возникает ли боль в результате активации специфических волокон или в результате сверхактивности сенсорных волокон, в норме имеющих другие модальности. Последняя возможность, как кажется, в большей степени соответствует нашему обыденному опыту. За возможным исключением обоняния, любые избыточные по интенсивности сенсорные стимулы - слепящий свет, рвущий ухо звук, тяжелый удар, тепло или холод за пределами нормального диапазона - приводят к возникновению боли. Такой взгляд здравого смысла был заявлен Эразмом Дарвином (Erasmus Darwin) в конце 18-го и Уильямом Джеймсом (William James) в конце 19-го века. Здравый смысл, однако, здесь (как и везде) оставляет желать чего-то еще. В настоящее время мало кто сомневается, что в большинстве случаев ощущение боли возникает в результате возбуждения специализированных ноцицептивных волокон. Ноцицептивные волокна не имеют специализированных окончаний. Они присутствуют в виде свободных нервных окончаний в дермисе кожи и в иных местах организма. Гистологически они неотличимы от C-механорецепторов ( МЕХАНОЧУВСТВИТЕЛЬНОСТЬ) и - и A-дельта терморецепторов ( глава ТЕРМОЧУВСТВИТЕЛЬНОСТЬ). Они отличаются от упомянутых рецепторов тем, что порог для их адекватных стимулов выше нормального диапазона. Они могут подразделяться на несколько разных типов по критерию того, какая сенсорной модальность представляет для них адекватный стимул. Болезненные термические и механические стимулы детектируются миелинизированными волокнами малого диаметра, таблица 2.2 показывает, что они относятся к категории A дельта-волокон. Полимодальные волокна, которые отвечают на широкое разнообразие интенсивностей стимулов разной модальности, также имеет малый диаметр, но не миелинизированы. Таблица 2.2 показывает, что эти волокна относятся к классу С . A дельта-волокна проводят импульсы с частотой 5- 30 м/с и ответственны за "быструю" боль, острое колющее ощущение; С-волокна проводят медленнее - 0,5 - 2 м/с и сигнализируют о "медленной" боли, часто продолжительной и часто переходящей в глухую боль. АМТ (Механо-термо-ноцицепторы с А дельта-волокнами) делятся на два типа. АМТ типа 1 в основном обнаруживаются в неоволосенной коже. АМТ типа 2 находятся в основном в оволосенной коже Наконец, ноцицепторы с С-волокнами ( СМT волокна) имеют порог в диапазоне 38оС - 50оС и отвечают постоянной активностью, которая зависит от интенсивности стимула ( рис. 21.1а). АМТ и СМТ рецепторы , как показывают их названия, реагируют и на термические, и на механические стимулы. Физиологическая ситуация, тем не менее, далека от простоты. Механизм передачи этих двух модальностей различен. Аппликация капсайцина не влияет на чувствительность к механическим стимулам, но ингибирует ответ на тепловые. При этом, тогда как капсайцин имеет анальгетический эффект в отношении тепловой и химической чувствительности полимодальных С-волокон в роговице, на механочувствительности он не сказывается. Наконец, было показано, что механические стимулы, которые генерируют такой же уровень активности в СМТ-волокнах, что и термические, вызывают, тем не менее, меньшую боль. Возможно, неизбежно более широкая поверхность, задействованная тепловым стимулом, вовлекает активность большего количества СМТ-волокон, чем в случае механического стимула.

    Сенситизация ноцицепторов (повышение чувствительности афферентных волокон рецепторов) происходит после их ответа на вредящий стимул. Сенситизированные ноцицепторы интенсивнее реагируют на повторный стимул, поскольку их порог снижен ( рис. 34.4). При этом наблюдается гипералгезия - более сильная боль в ответ на стимул прежней интенсивности, а также снижение болевого порога. Иногда ноцицепторы генерируют фоновый разряд, вызывающий спонтанную боль.

    Сенситизация происходит, когда вблизи от ноцицептивных нервных окончаний высвобождаются в результате повреждения или воспаления ткани такие химические факторы, как ионы К+, брадикинин , серотонин , гистамин , эйкозаноиды ( простагландины и лейкотриены). Допустим, вредящий стимул, попав на кожу, разрушил клетки участка ткани около ноцицептора ( рис. 34.5 , а). Из погибающих клеток выходят ионы К+, которые деполяризуют ноцицептор. Кроме того, высвобождаются протеолитические ферменты; при их взаимодействии с глобулинами плазмы крови образуется брадикинин. Он связывается с рецепторными молекулами мембраны ноцицептора и активирует систему вторичного посредника, сенситизирующую нервное окончание. Другие высвобождаемые химические вещества, такие как серотонин тромбоцитов, гистамин тучных клеток , эйкозаноиды различных клеточных элементов, вносят в сенситизацию свой вклад, открывая ионные каналы либо активируя системы вторичных посредников. Многие из них воздействуют также на кровеносные сосуды, клетки иммунной системы, тромбоциты и другие эффекторы, участвующие в воспалении.

    Кроме того, активация окончания ноцицептора может высвобождать такие регуляторные пептиды, как вещество Р (SP) и пептид, кодируемый геном кальцитонина ( CGRP), из других окончаний того же ноцицептора посредством аксон-рефлекса ( рис. 34.5 , б). Нервный импульс, возникший в одной из ветвей ноцицептора, направляется по материнскому аксону к центру. Одновременно он распространяется антидромно по периферическим ветвям аксона того же ноцицептора, в результате чего в коже высвобождаются вещество P и CGRP ( рис. 34.5 , б). Эти пептиды вызывают

    Боль является симптомом многих заболеваний и повреждений организма. У человека сформировался сложный механизм восприятия боли, который сигнализирует о повреждениях и заставляет принимать меры к устранению причин боли (одёрнуть руку и др.).

    Ноцицептивная система

    За восприятие и проведение боли в организме отвечает так называемая ноцицептивная система . В упрощённом виде механизм проведения боли можно представить следующим образом (рисунок ⭣).

    При раздражении болевых рецепторов (ноцицепторов), локализованных в различных органах и тканях (кожа, сосуды, скелетные мышцы , надкостница и др.), возникает поток болевых импульсов, которые по афферентным волокнам поступают в задние рога спинного мозга.

    Афферентные волокна бывают двух типов: А-дельта волокна и С-волокна.

    А-дельта волокна являются миелинизированными, а значит, быстропроводящими - скорость проведения импульсов по ним составляет 6-30 м/с. А-дельта волокна отвечают за передачу острой боли. Они возбуждаются высокоинтенсивными механическими (булавочный укол) и иногда термическими раздражениями кожи. Имеют скорее информационное значение для организма (заставляют отдёрнуть руку, отпрыгнуть и др.).

    Анатомически А-дельта ноцицепторы представлены свободными нервными окончаниями, разветвлёнными в виде дерева. Они располагаются преимущественно в коже и в обоих концах пищеварительного тракта. Имеются они также и в суставах. Трансмиттер (передатчик нервного сигнала) А-дельта волокон остаётся неизвестным.

    С-волокна - немиелинизированные; они проводят мощные, но медленные потоки импульсации со скоростью 0,5-2 м/с. Считается, что эти афферентные волокна предназначены для восприятия вторичной острой и хронической боли.

    С-волокна представлены плотными некапсулированными гломерулярными тельцами. Они являются полимодальными ноцицепторами, поэтому реагируют как на механические, так на температурные и химические раздражения. Активируются они химическими веществами, возникающими при повреждении тканей, являясь одновременно хеморецепторами, считаются оптимальными тканеповреждающими рецепторами.

    С-волокна распределяются по всем тканям за исключением центральной нервной системы. Волокна, имеющие рецепторы, воспринимающие повреждения тканей, содержат субстанцию Р, выступающую в качестве трансмиттера.

    В задних рогах спинного мозга происходит переключение сигнала с афферентного волокна на вставочный нейрон, с которого, в свою очередь, импульс ответвляется, возбуждая мотонейроны. Данное ответвление сопровождается двигательной реакцией на боль - отдёрнуть руку, отпрыгнуть и т.д. Со вставочного нейрона поток импульсов, поднимаясь далее по ЦНС, проходит через продолговатый мозг, в котором находится несколько жизненно важных центров: дыхательный, сосудодвигательный, центры блуждающего нерва, центр кашля, рвотный центр. Именно поэтому боль в некоторых случаях имеет вегетативное сопровождение - сердцебиение, потоотделение, скачки артериального давления, слюнотечение и т.д.

    Далее болевой импульс достигает таламуса. Таламус является одним из ключевых звеньев передачи болевого сигнала. В нём находятся так называемые переключающие (ПЯТ) и ассоциативные ядра таламуса (АЯТ). Эти образования имеют определённый, достаточно высокий порог возбуждения, который могут преодолеть далеко не все болевые импульсы. Наличие такого порога имеет очень важное значение в механизме восприятия боли, без него любое малейшее раздражение вызывало бы болевое ощущение.

    Тем не менее, если импульс достаточно сильный, он вызывает деполяризацию клеток ПЯТ, импульсы от них поступают в двигательные зоны коры головного мозга, определяя само ощущение боли. Такой путь проведения болевых импульсов называет специфическим. Он обеспечивает сигнальную функцию боли - организм воспринимает факт возникновения боли.

    В свою очередь, активация АЯТ обусловливает попадание импульсов в лимбическую систему и гипоталамус, обеспечивая эмоциональную окраску боли (неспецифический путь проведения боли). Именно из-за этого пути проведения восприятие боли имеет психоэмоциальную окраску. Кроме того, благодаря этому пути люди могут описывать воспринимаемую боль: острая, пульсирующая, колющая, ноющая и т.д., что определяется уровнем воображения и типом нервной системы человека.

    Антиноцицептивная система

    На всем протяжении ноцицепгивной системы присутствуют элементы антиноцицептивной системы, которая также является неотъемлемой частью механизма восприятия боли. Элементы этой системы призваны подавлять болевые ощущения. В механизмах развития анальгезии, подконтрольным антиноцицептивной системе, участвуют серотонинэргическая, ГАМК-эргическая и, в наибольшей степени, - опиоидная система. Функционирование последней реализуется за счёт белковых трансмиттеров - энкефалинов, эндорфинов - и специфических для них опиоидных рецепторов.

    Энкефапины (мет-энкефалин - H-Tyr-Gly-Gly-Phe-Met-OH, лей-энкефалин - H-Tyr-Gly-Gly-Phe-Leu-OH и др.) впервые были выделены в 1975 г. из мозга млекопитающих. По своей химической структуре относятся к классу пентапептидов, имея очень близкое строение и молекулярную массу. Энкефалины являются нейромедиаторами опиоидной системы, функционируют на всем ее протяжении от ноцицепторов и афферентных волокон до структур головного мозга.

    Эндорфины (β-эндофин и динорфин) - гормоны, продуцируемые кортикотропными клетками средней доли гипофиза. Эндорфины имеют более сложное строение и большую молекулярную массу, чем энкефалины. Так, β-эндофин синтезируется из β-липотропина, являясь, по сути, 61-91 аминокислотной частью этого гормона.

    Энкефалины и эндорфины, стимулируя опиоидные рецепторы, осуществляют физиологическую антиноцицепцию, причём энкефалины следует рассматривать как нейромедиаторы, а эндорфины - как гормоны.

    Опиоидные рецепторы - класс рецепторов, которые, являясь мишенями для эндорфинов и энкефалинов, участвуют в реализации эффектов антиноцицептивной системы. Их название произошло от опия - высушенного млечного сока мака снотворного, известного с древних времен источника наркотических анальгетиков.

    Выделяют 3 основных типа опиоидных рецепторов: μ (мю), δ (дельта), κ (каппа). Их локализация и эффекты, возникающие при их возбуждении, представлены в таблице ⭣.

    Локализация Эффект при возбуждении
    μ-рецепторы:
    Антиноцицептивная система Анальгезия (спинальная, супраспинальная), эйфория, пристрастие.
    Кора головного мозга Торможение коры, сонливость. Косвенно - брадикардия, миоз.
    Дыхательный центр Угнетение дыхания.
    Центр кашля Угнетение кашлевого рефлекса.
    Рвотный центр Стимуляция рвотного центра.
    Гипоталамус Угнетение центра терморегуляции.
    Гипофиз Ослабление выработки гонадотропных гормонов и усиление выработки пролактина и антидиуретического гормона.
    Желудочно-кишечный тракт Снижение перистальтики, спазм сфинктеров, ослабление секреции желез.
    δ-рецепторы:
    Антиноцицептивная система Анальгезия.
    Дыхательный центр Угнетение дыхания.
    κ-рецепторы:
    Антиноцицептивная система Анальгезия, дисфория.

    Энкефалины и эндорфины, стимулируя опиоидные рецепторы, вызывают активацию связанного с этими рецепторами G₁-белка. Данный белок ингибирует фермент аденилатциклазу, которая в обычных условиях способствует синтезу циклического аденозинмонофосфата (цАМФ). На фоне её блокады количество цАМФ внутри клетки снижается, что приводит к активации мембранных калиевых каналов и блокаде кальциевых каналов.

    Как известно, калий - это внутриклеточный ион, кальций - внеклеточный ион. Указанные изменения в работе ионных каналов обусловливают выход ионов калия из клетки, притом что кальций внутрь клетки войти не может. В результате заряд мембраны резко снижается, и развивается гиперполяризация - состояние, при котором клетка не воспринимает и не передаёт возбуждение. Как следствие возникает подавление ноцицептивной импульсации.

    Источники:
    1. Лекции по фармакологии для высшего медицинского и фармацевтического образования / В.М. Брюханов, Я.Ф. Зверев, В.В. Лампатов, А.Ю. Жариков, О.С. Талалаева - Барнаул: изд-во Спектр, 2014.
    2. Общая патология человека / Саркисов Д.С., Пальцев М.А., Хитров Н.К. - М.: Медицина, 1997.

    Ярослав Алексеевич Андреев - кандидат биологических наук, старший научный сотрудник лаборатории нейрорецепторов и нейрорегуляторов отдела молекулярной нейробиологии Института биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова РАН. Научные интересы связаны с поиском и характеристикой модуляторов болевых рецепторов.

    Юлия Александровна Логашина - младший научный сотрудник той же лаборатории. Занимается поиском и характеристикой новых лигандов TRPA1 рецептора.

    Ксения Игоревна Лубова - студентка биологического факультета Московского государственного университета им. М. В. Ломоносова. Изучает TRP рецепторы и их модуляторы.

    Александр Александрович Василевский - кандидат химических наук, руководитель группы молекулярных инструментов для нейробиологии отдела молекулярной нейробиологии Института биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова РАН. Специалист в области ионных каналов и природных токсинов.

    Сергей Александрович Козлов - доктор химических наук, руководитель лаборатории нейрорецепторов и нейрорегуляторов того же отдела. Область научных интересов - белковые рецепторы в нервной системе и их лиганды.

    Говорят, что жизнь - это боль. Хотя в этой фразе содержится нечто негативное, связанное с неприятными ощущениями, переживаниями или даже тяжелыми страданиями, не стоит забывать, что боль (ноцицепция) предупреждает нас об опасности - сигнализирует о нарушениях в организме, который немедленно принимается их устранять. Вместе с тем существует и боль, которая приносит только мучения.

    Основная причина появления такой боли - сбои в передаче болевых сигналов (нервных импульсов) от чувствительных нейронов к головному мозгу, который и формирует неприятные ощущения. Когда воздействие неопасных стимулов распознающие нейроны расценивают как опасное, развивается состояние, которое называется гиперчувствительностью. И это не всегда плохо, так как в нужный момент она играет важную роль в процессе выздоровления и восстановления организма. Однако бывает и так, что реального повода нет, а гиперчувствительность ведет к изнурительной хронической боли. В таком случае самые обычные безобидные стимулы (легкое прикосновение или тепло) вызывают аллодинию (от греч. άλλος - другой и οδύνη - мучение), а болезненные стимулы - боль еще большей интенсивности, гиперальгезию (от греч. ὑπέρ - сверх- и ἄλγος - боль). Часто аномально интенсивная и нередко хроническая боль, которая изматывает и физиологически, и психологически, а также затрудняет выздоровление, возникает в результате таких заболеваний, как артрит, опоясывающий лишай, СПИД, рак костей и др.

    Прежде чем винить в аномалиях чувствительные нейроны (ноцицепторы), которые воспринимают, анализируют и передают болевые сигналы, разберемся, как они работают в здоровом организме и что происходит при патологиях.

    Почему так больно?

    Биологическая функция ноцицепторов состоит не только в регистрации раздражителя и сообщении об этом нашему мозгу, но и в восприятии сигналов от ближайших соседей. Нейроны окружены другими клетками организма и межклеточной средой, за сохранность и правильное функционирование которых отвечает наша нервная система. Поэтому у ноцицепторов имеется множество молекулярных сенсоров (или рецепторов), настроенных на распознавание химических раздражителей, изменения состава и свойств межклеточной среды, выброса сигнальных молекул из близлежащих клеток. Нейрон самостоятельно «вычисляет» вклад каждого такого молекулярного сенсора по силе и длительности стимуляции, и, если стимулы расцениваются как нежелательные, сигнализирует об этом - и нам становится больно; это «нормальная» физиологическая боль (ноцицепция). Патологическая боль возникает как в случае гибели нейронов при повреждении проводящей сети периферической или центральной нервной системы, так и при ошибочной работе самих нейронов, а ошибаются они из-за неправильной работы их сенсоров.

    Болевые сенсоры (или рецепторы) - это мембранные белки, которые распознают физическое или химическое воздействие на мембрану нейрона. При этом они являются катион-селективными ионными каналами, то есть обеспечивают проведение положительно заряженных ионов (натрия, калия, кальция) через клеточную мембрану. Активация рецепторов приводит к открытию катионных каналов и возбуждению чувствительных нейронов - возникновению нервного импульса. Подробнее о наиболее изученных болевых рецепторах мы расскажем ниже.

    Что происходит, когда, предположим, человек по неосторожности обжег руку горячим предметом? Такое опасное температурное воздействие регистрируют рецепторы, которые располагаются в мембране ноцицептора. Они мгновенно распознают сильную стимуляцию и передают импульс в центральную нервную систему. На столь сильное возбуждение мозг незамедлительно реагирует, и мы рефлекторно отдергиваем руку от горячего предмета. Интересно, что те же сенсоры реагируют на капсаицин - активное вещество жгучего перца, вызывающего «пожар» во рту.

    За распознавание ряда опасных химических воздействий отвечают другие рецепторы, которые воспринимают стимулы только с внутриклеточной стороны, поэтому для их активации опасные вещества должны не только проникнуть через кожу, но и попасть внутрь нейрона, «пробравшись» через липидную биомембрану. Если химический ожог вызван кислотой, то работать будет именно тот рецептор, который чувствителен к изменению кислотности среды, и тоже даст сильный ответ, как только кислота достигнет нейрона.

    Руку мы отдернули, но за время контакта с горячей поверхностью часть наших клеток погибла, и в ответ на повреждение ткани у нас начинает развиваться воспалительный процесс. В этом тоже принимает участие наша нервная система. Из поврежденных клеток через разорванные цитоплазматические мембраны во внеклеточную среду начинают выделяться характерные для внутриклеточной среды молекулы, в частности аденозинтрифосфорной кислоты (АТФ). На этот случай в нейронах тоже есть свой рецептор, который активируется молекулами АТФ и сигнализирует о том, что рядом с ним произошла гибель клеток и требуется их восстановление. Дело в том, что АТФ, как известно еще со школы, - основная энергетическая молекула организма, и такая «ценность» редко оказывается в межклеточной среде.

    Нейрон не просто сигнализирует, он выбрасывает во внеклеточную среду особые биологически активные соединения, медиаторы воспаления, что приводит к длительному развитию нейрогенного воспаления - расширению сосудов и привлечению клеток иммунной системы. Пока идет процесс регенерации и в среде присутствуют медиаторы воспаления, сенсорные нейроны посылают сигнал в центральную нервную систему, где он тоже воспринимается как боль, но уже не такая сильная. Так как поврежденная ткань нуждается в защите, чувствительность нейронов к внешним воздействиям повышается, и даже незначительное механическое или тепловое воздействие будет вызывать сильную болевую реакцию. Это и есть «полезная» гиперчувствительность.

    Почти все знают, что к поврежденной ткани рекомендуется приложить холод, чтобы облегчить боль и уменьшить воспаление. В этом эффекте также задействованы нейрональные рецепторы. Главный рецептор «по холоду» - ментоловый (помните «мятный» холодок?) - находится не в тех же нейронах, где располагается «тепловой», а потому ощущения холода и жары передаются различными чувствительными волокнами. Оказывается, информация от разных ноцицепторов «суммируется» в спинном мозгу, сигнал от горячего воздействия корректируется с учетом сигнала от холодного, и именно поэтому приложенный кусочек льда может унять сильную боль.

    Описанная схема развития боли сильно упрощена (рис. 1). На самом деле, чтобы разобраться в деталях ноцицепции, ученые исследуют каждый рецептор отдельно в изолированных условиях. Эксперименты проводят на клеточных линиях, в которые методами генной инженерии встраивают гены определенных рецепторов. Расскажем немного об изучении и функциях нескольких наиболее важных болевых рецепторов. Как оказалось, они не всегда ориентированы на распознавание и генерацию болевого сигнала, но вовлечены в регуляцию многих других процессов, поэтому умение корректировать их работу различными лекарственными препаратами поможет лечить разнообразные болезни (рис. 2).

    Рецепторы температуры и химических раздражителей

    Очень часто в развитии боли и воспаления играют роль чувствительные нейроны, которые отвечают за восприятие высокой температуры. Еще в середине XX века обнаружили, что большие дозы капсаицина вызывают у экспериментальных животных новый тип обезболивания (анальгезии) . После введения капсаицина вначале наблюдается характерная поведенческая реакция, вызванная болью, но затем наступает длительный период потери чувствительности к ряду внешних стимулов. Животные в таком состоянии нормально реагируют на мягкое механическое раздражение, но утрачивают реакцию на многие болевые стимулы, и у них не развивается нейрогенное воспаление. Таким образом, нейроны, отвечающие за восприятие высокой температуры, также отвечают за восприятие химических раздражителей и нейрогенный компонент воспалительного ответа . Стало очевидно, что рецептор, который реагирует на воздействие температуры и капсаицина, может оказаться полезной мишенью для поиска средств, направленных на лечение воспаления и боли . В конце ХХ в. этот рецептор был охарактеризован на молекулярном уровне и назван TRPV1 (от англ. transient receptor potential channel vanilloid family member 1 - первый представитель ванилоидного семейства рецепторов переменного рецепторного потенциала), или проще - ванилоидный рецептор 1 (рис. 3) . Название «ванилоидные рецепторы» дано не случайно: TRPV1 и другие представители семейства активируются химическими соединениями, содержащими ванилиновую группу (например, капсаицином). Установлено, что TRPV1 - катион-селективный ионный канал, который активируется различными стимулами (температурой выше 43°C, низким рН, капсаицином), а кроме того, его активность регулируется медиаторами воспаления, правда, не напрямую, а через внутриклеточных посредников. Мыши, нокаутные по гену TRPV1 (то есть такие, у которых ген этого рецептора отсутствует или поврежден так, что не работает), значительно медленнее реагируют на тепло, и у них почти не появляется тепловая гиперчувствительность при воспалении . TRPV1 играет важную роль в ряде патологических состояний: при болях, вызванных воспалительным процессом, при онкологических, нейропатических и висцеральных болях, а также при заболеваниях дыхательных путей, панкреатите и мигрени.

    Исследования TRPV1 привели к интенсивному изучению подобных рецепторов. Так, был обнаружен еще один ванилоидный рецептор - TRPV3. Интересно, что он реагирует как на приятное тепло, так и на болезненный жар: активность TRPV3 регистрируется при температуре выше 33°C, причем его ответ сильнее на более высокую температуру и возрастает при повторяющейся тепловой стимуляции. Помимо температуры, этот рецептор также активируется камфорой, едкими экстрактами тимьяна, орегано и гвоздики. TRPV3 - еще один кандидат на роль участника в болевой гиперчувствительности, его активность регулируется медиаторами воспаления. Наконец, он напрямую активируется оксидом азота II (NO) - вторичным мессенджером, обеспечивающим увеличение чувствительности нейронов к стимуляции. Также следует отметить наличие TRPV3 в клетках кожи кератиноцитах, где его активация приводит к выбросу воспалительного медиатора интерлейкина-1, что подчеркивает важную роль этого рецептора в воспалительных заболеваниях кожи .

    TRP-рецепторы - тетрамеры (рис. 3), то есть образованы четырьмя полипептидными цепочками. При этом могут собираться как гомомеры, то есть рецепторы, сформированные одинаковыми цепочками (например, TRPV1 или TRPV3, описанные выше), так и гетеромеры из разных цепей. Гетеромерные рецепторы (например, построенные из цепочек TRPV1 и TRPV3) обладают различной чувствительностью к тепловым стимулам, пороговая температура их активации лежит между значениями, пороговыми для гомомерных рецепторов.

    Интересна история открытия холодового рецептора TRPM8 (здесь «M» означает «меластатин», что указывает на функцию рецепторов этого семейства в меланоцитах - клетках кожи, ответственных за пигментацию). Вначале был обнаружен кодирующий его ген, активность которого повышалась при раке простаты и некоторых других онкологических заболеваниях . Много позже была показана способность TRPM8 реагировать на ментол (компонент мяты) и ряд других «освежающих» веществ, а также на понижение температуры (ниже 26°С). Теперь этот рецептор считается основным сенсором холода в нервной системе . Исследования выявили, что TRPM8 отвечает за широкий диапазон восприятия холодовых стимулов - от приятной прохлады до болезненного холода и холодовой гиперчувствительности. Такое разнообразие функций объясняется существованием нескольких субпопуляций чувствительных нейронов, которые используют TRPM8 как многофункциональный сенсор холода, настроенный на определенную температуру при участии внутриклеточных сигнальных систем.

    Самый непонятный и очень важный рецептор TRPA1 (здесь «A» означает «анкирин», что указывает на наличие в структуре рецепторов этого семейства большого числа «анкириновых повторов», особых белковых элементов) находят в чувствительных нейронах кожи, клетках эпителия кишечника, легких и мочевого пузыря, причем TRPA1 часто соседствует с TRPV1 . Вещества, активирующие TRPA1, вызывают жжение, механическую и термическую гиперчувствительность, а также нейрогенное воспаление. Гиперэкспрессия гена, кодирующего TRPA1, ведет к возникновению хронического кожного зуда и аллергического дерматита. Наследственное заболевание «синдром эпизодической боли», которое характеризуется неожиданно возникающей изнурительной болью при голодании или физической нагрузке, связано с мутацией в этом рецепторе, приводящей к его избыточной активности .

    Основная функция TRPA1 - распознавание химических и воспалительных агентов, и их ассортимент столь велик, что с правильной работой этого рецептора связаны почти все жизненные процессы нашего организма. В дыхательной системе он распознает летучие вредные вещества: слезоточивый газ, озон, альдегиды (акролеин, компоненты корицы), сераорганические соединения (жгучие компоненты горчицы, лука и чеснока), вызывая кашель, чихание и образование слизи. В кишечнике TRPA1 регистрирует присутствие воспалительных агентов. Гиперактивность мочевого пузыря при диабете вызвана активацией этого рецептора акролеином, который накапливается в моче. Выявлено участие TRPA1 в возникновении мигрени под влиянием сигаретного дыма и формальдегида у некоторых людей .

    Воздействие на рецепторы чувствительных нейронов, участвующие в восприятии температуры, с помощью лекарственных средств приводит к облегчению боли и воспаления. Именно так, не зная о молекулярных мишенях, народная медицина в разное время применяла настойки перца (TRPV1), горчицы (TRPA1), мяты (TRPM8) и гвоздики (TRPV3) для лечения ряда воспалительных заболеваний.

    Пуриновые рецепторы

    Мы уже упоминали, что организму очень важно знать о повреждении тканей. При травмах, когда нарушается целостность органов и происходит гибель клеток, при ишемии или воспалении в межклеточное пространство попадают молекулы АТФ. Этот кофермент множества реакций обеспечивает энергией многие процессы в клетке; он слишком ценен для функционирования клеток, поэтому редко выбрасывается за их пределы. Восприятие повышения локальной концентрации АТФ осуществляют пуринергические рецепторы (P2X), являющиеся катион-селективными ионными каналами, они запускают болевой ответ, возникающий вследствие разрушения тканей, деформации органов и развития опухолей . Для чувствительных нейронов характерны подтипы P2X2 и P2X3, важная роль последнего в развитии боли при воспалении показана в исследованиях на нокаутных мышах. Также известно, что P2X-рецепторы имеют принципиальное значение для многих физиологических процессов, таких как регуляция тонуса сосудов, вкусовая рецепция и т.д.

    Рецепторы кислоты

    Для регистрации кислотности во многих типах клеток нервной системы присутствуют так называемые кислоточувствительные ионные каналы (acid-sensing ion channels , ASIC). Считается, что они осуществляют передачу сигнала, связанного с локальным изменением рН при нормальной нейрональной активности в центральной нервной системе. Однако задействованы они и в патологических процессах. В последнее время рецептор подтипа ASIC1a рассматривается как один из основных факторов гибели нейронов в центральной нервной системе при ишемических состояниях. При ишемии и гипоксии усиливается гликолиз, в результате чего происходит накопление молочной кислоты и последующее «закисление» ткани. «Выключение» рецептора ASIC1a вызывает нейропротекторное действие в модели ишемии, что было показано на нокаутных мышах . В периферической нервной системе и тканях внутренних органов ASIC ответственны за чувствительность к боли, возникающей при тканевом ацидозе в мышцах, при сердечной ишемии, повреждении роговицы, воспалении, новообразованиях и местной инфекции . В нейронах периферической нервной системы в основном представлены рецепторы подтипа ASIC3, активность которых также необходимо понижать для купирования боли.

    В отличие от TRP-рецепторов, P2X-рецепторы и ASIC являются тримерами (рис. 3), т.е. собраны из трех полипептидных цепочек. Но точно так же эти рецепторы могут быть гомомерами и гетеромерами, что увеличивает их разнообразие и спектр выполняемых функций.

    Как победить боль?

    Так что же делать, если мы испытываем боль? Если это боль острая или хроническая, терпеть ее нельзя, и необходимо использовать обезболивающие средства, чтобы вернуть нашу систему ноцицепции в нормальное состояние, а себя - к жизни в самом прямом смысле этого слова. В настоящее время для обезболивания применяется множество лекарственных препаратов различных фармакологических групп. Основное место в этом ряду занимают нестероидные противовоспалительные средства (НПВС), антиконвульсанты и антидепрессанты, а также наркотические анальгетики (морфин и другие опиаты и опиоиды). Имеющиеся в настоящее время анальгетические средства влияют главным образом на пути передачи и распространения боли. Для специфичного регулирования рецепторов боли, описанных выше, пока препаратов на рынке лекарств нет.

    Первой «болевой» мишенью для фармацевтических компаний стал рецептор TRPV1, поскольку содержащие его чувствительные нейроны играют роль интеграторов многих стимулов, воспринимающихся как боль. Скрининг химических библиотек и рациональный дизайн лигандов на основе знаний о сайте связывания капсаицина позволили создать значительное количество высокоэффективных низкомолекулярных ингибиторов TRPV1. Эти соединения обладали обезболивающим эффектом, но приводили к развитию гипертермии - повышению температуры тела (на 1,5–3°С). Гипертермия стала основной причиной отказа фармакологических компаний от развития лекарственных препаратов на основе полных антагонистов рецептора TRPV1. Однако если ингибировать этот рецептор лишь частично, повышения температуры тела можно избежать. И такие частичные ингибиторы TRPV1 нам, под руководством академика Е. В. Гришина (1946–2016), удалось найти в яде морской анемоны Heteractis crispa . В яде анемоны обнаружено сразу три пептида, ингибирующих TRPV1 и не повышающих температуру тела [ , ], но наиболее мягким эффектом обладал пептид, получивший название АРНС3. Он имеет сильный анальгетический эффект в дозах 0,01–0,1 мг/кг массы тела и слабо понижает температуру тела (всего на 0,6°С) . По силе обезболивания он сопоставим с морфином, но не вызывает наркотического действия и привыкания. По данным доклинических исследований, пептид полностью пригоден для дальнейших клинических испытаний, так как никакие побочные эффекты на лабораторных животных не были обнаружены. Более того, понижение температуры тела необходимо, например, для обеспечения нейропротекции у выживших после остановки сердца, и гипотермическое действие пептида может служить дополнительным бонусом.

    Работая под руководством Гришина, мы также обнаружили ингибитор P2X3-рецепторов. Это тоже оказался пептид, которому было дано имя PT1, а найден он был в яде паука Alopecosa marikovskyi . Кстати, PT1 уже успешно прошел лабораторные и доклинические испытания, так что через какое-то время он вполне может стать одним из первых принципиально новых анальгетиков, специфично ингибирующих «болевые» рецепторы. Для третьего из упомянутых подобных рецепторов, ASIC3, нами также был найден ингибитор: пептид Ugr 9-1; источником стал яд морской анемоны Urticina grebelnyi .

    Заметим, что в природных ядах часто находят токсины с обратным эффектом, то есть вещества, активирующие рецепторы боли. С точки зрения биологии ядовитых животных это понятно: «болевые» токсины используются ими в целях защиты. Например, в яде китайского птицееда Haplopelma schmidti содержится сильнейший активатор TRPV1, а из яда техасской коралловой змеи Micrurus tener получен активатор ASIC1a. Сейчас уже научились извлекать пользу из таких веществ: их применяют как молекулярные инструменты, чтобы «замораживать» болевые рецепторы в активированном состоянии и исследовать их структуру (рис. 3) [ , ]. С другой стороны, обнаружение полезных молекул в природных ядах - тоже довольно распространенное явление, и несколько природных токсинов (или веществ, созданных на их основе) сегодня применяются в медицине как лекарства. Вот где обретает особый смысл известное изречение средневекового алхимика Парацельса: «Все есть яд, и ничто не лишено ядовитости; одна лишь доза делает яд незаметным».

    Рецепторы чувствительных нейронов представляют собой заманчивую, но сложную мишень для создания лекарств. Препараты, если они обладают хорошей селективностью к этим рецепторам, будут приняты потребителями с большой радостью, так как почти все современные средства ограничены в применении из-за побочных эффектов. Работы по поиску селективных препаратов ведутся, в том числе и в нашей стране, и при благоприятном стечении обстоятельств такие лекарства уже скоро смогут появиться в аптеках. Долгих вам лет жизни без боли!

    Работа выполнена при поддержке Российского научного фонда (проект № 14-24-00118).

    Литература
    . Palermo N. N., Brown H. K., Smith D. L. Selective neurotoxic action of capsaicin on glomerular C-type terminals in rat substantia gelatinosa // Brain Res. 1981. V. 208. P. 506–510.
    . O’Neill J., Brock C., Olesen A. E. et al.

    Физиология боли

    В узком смысле слова боль – это неприятное ощущение, возникающее при действии сверхсильных раздражителей, вызывающих структурно-функциональные нарушения в организме. Отличия боли от других ощущений в том, что она не информирует мозг о качестве раздражителя, а указывает на то, что раздражитель является повреждающим. Другой особенностью болевой сенсорной системы является наиболее сложной и мощный ее эфферентный контроль.

    Болевой анализатор запускает в ЦНС несколько программ ответа организма на боль. Следовательно, боль имеет несколько компонентов. Сенсорный компонент боли характеризует ее как неприятное, тягостное ощущение; аффективный компонент – как сильную отрицательную эмоцию; мотивационный компонент – как отрицательную биологическую потребность, запускающую поведение организма, направленное на выздоровление. Моторный компонент боли представлен различными двигательными реакциями: от безусловных сгибательных рефлексов до двигательных программ антиболевого поведения. Вегетативный компонент характеризует нарушение функций внутренних органов и обмена веществ при хронических болях. Когнитивный компонент связан с самооценкой боли, боль при этом выступает как страдание. При деятельности других систем эти компоненты слабо выражены.

    Биологическая роль боли определяется несколькими факторами. Боль исполняет роль сигнала об угрозе или повреждении тканей организма и предупреждает их. Боль имеет познавательную функцию: человек через боль учится избегать возможных опасностей внешней среды. Эмоциональный компонент боли выполняет функцию подкрепления при образовании условных рефлексов. Боль является фактором мобилизации защитно-приспособительных реакций организма при повреждении его тканей и органов.

    Выделяют два вида боли – соматическую и висцеральную. Соматическую боль подразделяют на поверхностную и глубокую Поверхностная боль может быть ранняя (быстрая, эпикрическая) и поздняя (медленная, протопатическая).

    Существуют три теории боли.

    1. Теория интенсивности была предложена Э.Дарвином и А.Гольдштейнером. По этой теории боль не является специфическим чувством и не имеет своих специальных рецепторов. Она возникает при действии сверхсильных раздражителей на рецепторы пяти известных органов чувств. В формировании боли участвуют конвергенция и суммация импульсов в спинном и головном мозге.

    2. Теория специфичности была сформулирована немецким физиологом М.Фреем. В соответствии с этой теорией боль является специфическим чувством, имеющим собственный рецепторный аппарат, афферентные волокна и структуры головного мозга, перерабатывающие болевую информацию. Эта теория в дальнейшем получила более полное экспериментальное и клиническое подтверждение.

    3. Современная теория боли базируется преимущественно на теории специфичности. Было доказано существование специфичных болевых рецепторов. Вместе с тем в современной теории боли использовано положение о роли центральной суммации и конвергенции в механизмах боли. Наиболее крупными достижениями современной теории боли является разработка механизмов центрального восприятия боли и запуска противоболевой системы организма.

    Болевые рецепторы

    Болевые рецепторы являются свободными окончаниями чувствительных миелиновых нервных волокон Аδ и немиелиновых волокон С. Они найдены в коже, слизистых оболочках, надкостнице, зубах, мышцах, суставах, внутренних органах и их оболочках, сосудах. Их нет в нервной ткани головного и спинного мозга. Наибольшая их плотность имеется на границе дентина и эмали зуба.

    Выделяют следующие основные типы болевых рецепторов:

    1. Механоноцицепторы и механотермические ноцицепторы Аδ-волокон реагируют на сильные механические и термические раздражители, проводят быструю механическую и термическую боль, быстро адаптируются; расположены преимущественно в коже, мышцах, суставах, надкостнице; их афферентные нейроны имеют малые рецептивные поля.

    2. Полисенсорные ноцицепторы С-волокон реагируют на механические, термические и химические раздражители, проводят позднюю плохо локализованную боль, медленно адаптируются; их афферентные нейроны имеют большие рецептивные поля.

    Болевые рецепторы возбуждаются тремя видами раздражителей:

    1. Механические раздражители, создающие давление более 40г/мм 2 при сдавливании, растяжении, сгибании, скручивании.

    2. Термические раздражители могут быть тепловыми (> 45 0 С) и холодовыми (< 15 0 С).

    3. Химические раздражители, освобождающиеся из поврежденных клеток тканей, тучных клеток, тромбоцитов (К + , Н + , серотонин, ацетилхолин, гистамин), плазмы крови (брадикинин, каллидин) и окончаний ноцицептивных нейронов (вещество Р). Одни из них возбуждают ноцицепторы (К + , серотонин, гистамин, брадикинин, АДФ), другие сенсибилизируют их.

    Свойства болевых рецепторов: болевые рецепторы имеют высокий порог возбуждения, что обеспечивает их ответ только на чрезвычайные раздражители. Ноцицепторы С-афферентов плохо адаптируются к длительно действующим раздражителям. Возможно повышение чувствительности болевых рецепторов – снижение порога их раздражения при многократной или длительной стимуляции, что называется гипералгезией. При этом ноцицепторы способны отвечать на стимулы субпороговой величины, а также возбуждаться раздражителями других модальностей.

    Проводящие пути болевой чувствительности

    Нейроны, воспринимающие болевую импульсацию. От болевых рецепторов туловища, шеи и конечностей Аδ- и С-волокна первых чувствительных нейронов (их тела находятся в спинальных ганглиях) идут в составе спинномозговых нервов и входят через задние корешки в спинной мозг, где разветвляются в задних столбах и образуют синаптические связи прямо или через интернейроны со вторыми чувствительными нейронами, длинные аксоны которых входят в состав спиноталамических путей. При этом они возбуждают два вида нейронов: одни нейроны активируются только болевыми стимулами, другие – конвергентные нейроны – возбуждаются также и неболевыми стимулами. Вторые нейроны болевой чувствительности преимущественно входят в состав боковых спиноталамических путей, которые и проводят большую часть болевых импульсов. На уровне спинного мозга аксоны этих нейронов переходят на сторону, противоположную раздражению, в стволе головного мозга они доходят до таламуса и образуют синапсы на нейронах его ядер. Часть болевой импульсации первых афферентных нейронов переключаются через интернейроны на мотонейроны мышц-сгибателей и участвуют в формировании защитных болевых рефлексов. В боковом спиноталамическом пути выделяют эволюционно более молодой неоспиноталамический путь и древний палеоспиноталамический путь.

    Неоспиноталамический путь проводит болевые сигналы по Аδ-волокнам преимущественно в специфические сенсорные (вентральные задние) ядра таламуса, имеющие хорошую топографическую проекцию периферии тела. Кроме этого небольшая часть импульсов поступает в ретикулярную формацию ствола и далее в неспецифические ядра таламуса. Передача возбуждения в синапсах этого пути осуществляется с помощью быстродействующего медиатора глутамата. Из специфических ядер таламуса болевые сигналы передаются преимущественно в сенсорную кору больших полушарий. Эти особенности формируют основную функцию неоспиноталамического пути – проведение «быстрой» боли и восприятие ее с высокой степенью локализации.

    Палеоспиноталамический путь проводит болевые сигналы по С-волокнам преимущественно в неспецифические ядра таламуса прямо или после переключения в нейронах ретикулярной формации ствола мозга. Передача возбуждения в синапсах этого пути происходит более медленно. Медиатором является вещество Р. Из неспецифических ядер импульсация поступает в сенсорную и другие отделы коры больших полушарий. Небольшая часть импульсации поступает и в специфические ядра таламуса. В основном волокна этого пути оканчиваются на нейронах 1) неспецифических ядер таламуса; 2) ретикулярной формации; 3) центрального серого вещества; 4) голубого пятна; 5) гипоталамуса. Через палеоспиноталамический путь проводится «поздняя», плохо локализуемая боль, формируются аффективно-мотивационные проявления болевой чувствительности.

    Кроме этого болевая чувствительность частично проводится по другим восходящим путям: переднему спиноталамическому, тонкому и клиновидному путям.

    Вышеназванные пути проводят и другие виды чувствительности: температурную и тактильную.

    Роль коры больших полушарий в восприятии боли

    Полноценное чувственное восприятие боли организмом без участия коры головного мозга невозможно.

    Первичное проекционное поле болевого анализатора находится в соматосенсорной коре задней центральной извилины. Оно обеспечивает восприятие «быстрой» боли и идентификацию места ее возникновения на теле. Для более точной идентификации локализации боли в процесс обязательно включается и нейроны моторной коры передней центральной извилины.

    Вторичное проекционное поле расположено в соматосенсорной коре на границе пересечения центральной борозды с верхним краем височной доли. Нейроны данного поля имеют двусторонние связи с ядрами таламуса, что позволяет этому полю избирательно фильтровать, проходящие через таламус возбуждения болевого характера. А это в свою очередь позволяет данному полю вовлекаться в процессы, связанные с извлечением из памяти энграммы необходимого поведенческого акта, его реализации в деятельности эффекторов и оценки качества достигнутого полезного результата. Двигательные компоненты болевого поведения формируются в совместной деятельности моторной и премоторной коры, базальных ганглиев и мозжечка.

    Лобная кора играет важную роль в восприятии боли. Она обеспечивает самооценку боли (ее когнитивный компонент) и формирование целенаправленного болевого поведения.

    Лимбическая система (поясная извилина, гиппокамп, зубчатая извилина, миндалевидный комплекс височной доли) получает болевую информацию от передних ядер таламуса и формирует эмоциональный компонент боли, запускает вегетативные, соматические и поведенческие реакции, обеспечивающие приспособительные реакции к болевому раздражителю.

    Некоторые виды болевых ощущений

    Существуют боли, которые названы проекционными или фантомными . Их возникновение основано на законе проекции боли: какая бы часть афферентного пути не раздражалась, боль ощущается в области рецепторов данного сенсорного пути. По современным данным в формировании данного вида болевого ощущения участвуют все отделы болевой сенсорной системы.

    Существуют также так называемые отраженные боли: когда боль ощущается не только в пораженном органе, но и в соответствующем дерматоме тела. Участки поверхности тела соответствующего дерматома, где возникает ощущение боли, назвали зонами Захарьина – Геда . Возникновение отраженных болей связано с тем, что нейроны, проводящие болевую импульсацию от рецепторов пораженного органа и кожи соответствующего дерматома, конвергируют на одном и том же нейроне спиноталамического пути. Раздражение этого нейрона с рецепторов пораженного органа в соответствии с законом проекции боли приводит к тому, что боль ощущается и в области кожных рецепторов.

    Антиноцицептивная система

    Антиболевая система состоит из четырех уровней: спинального, стволового, гипоталамического и коркового.

    1. Спинальный уровень антиноцицептовной системы. Важным ее компонентом является «воротный контроль» спинного мозга, концепция которого имеет следующие основные положения: передача болевых нервных импульсов с первых нейронов на нейроны спиноталамических путей (вторые нейроны) в задних столбах спинного мозга модулируется спинальным воротным механизмом – тормозными нейронами, расположенными в желатинозном веществе спинного мозга. На этих нейронах оканчиваются разветвления аксонов различных сенсорных путей. В свою очередь нейроны желатинозной субстанции оказывают пресинаптическое торможение в местах переключения первых и вторых нейронов болевых и других сенсорных путей. Часть нейронов являются конвергентными: на них образуют синапсы нейроны не только от болевых, но и от других рецепторов. Спинальный воротный контроль регулируется соотношением импульсов, поступающих по афферентным волокнам большого диаметра (неболевая чувствительность) и малого диаметра (болевая чувствительность). Интенсивный поток импульсов по волокнам большого диаметра ограничивает передачу болевых сигналов на нейроны спиноталамических путей (закрывает «ворота»). Напротив, интенсивный поток болевых импульсов по первому афферентному нейрону, ингибируя тормозные интернейроны, облегчает передачу болевых сигналов на нейроны спиноталамических путей (открывает «ворота»). Спинальный воротный механизм находится под постоянным влиянием нервных импульсов структур ствола мозга, которые передаются по нисходящим путям как на нейроны желатинозной субстанции, так и на нейроны спиноталамических путей.

    2. Стволой уровень антиноцицептивной системы. К стволовым структурам противоболевой системы относятся, во-первых, центральное серое вещество и ядра шва, образующие единый функциональный блок, во-вторых, крупноклеточное и парагигантоклеточное ядра ретикулярной формации и голубое пятно. Первый комплекс блокирует прохождение болевой импульсации на уровне релейных нейронов ядер задних рогов спинного мозга, а также релейных нейронов сенсорных ядер тройничного нерва, образующих восходящие пути болевой чувствительности. Второй комплекс возбуждает почти всю антиноцицептивную систему (см.рис.1).

    3. Гипоталамический уровень антиноцицептивной системы, с одной стороны, функционирует самостоятельно, а с другой – выступает как настройка, контролирующая и регулирующая антиноцицептивные механизмы стволового уровня за счет связей гипоталамических нейронов разной ядерной принадлежности и разной нейрохимической специфичности. Среди них идентифицированы нейроны, в окончаниях аксонов которых выделяются энкефалины, β-эндорфин, норадреналин, дофамин см.рис.2).

    4. Корковый уровень антиноцицептивной системы. Объединяет и контролирует деятельность антиноцицептивных структур различного уровня соматосенсорная область коры больших полушарий. При этом наиболее важную роль в активации спинальных и стволовых структур играет вторичная сенсорная область. Ее нейроны образуют наибольшее количество волокон нисходящего контроля болевой чувствительности, направляющиеся к задним рогам спинного мозга и ядрам ствола головного мозга. Вторичная сенсорная кора видоизменяет активность стволового комплекса антиноцицептивной системы. Кроме этого соматосенсорные поля коры больших полушарий контролируют проведение афферентных болевых импульсов через таламус. Кроме таламуса, кора большого мозга регламентирует прохождение болевой импульсации в гипоталамусе, лимбической системе, ретикулярной формации, спинном мозге. Ведущая роль в обеспечении кортико-гипоталамических влияний отводится нейронам лобной коры.

    Медиаторы антиноцицептивной системы

    К медиаторам противоболевой системы относят пептиды, которые образуются в головном мозге, аденогипофизе, мозговом слое надпочечников, желудочно-кишечном тракте, плаценте из неактивных предшественников.. Сейчас к опиатным медиаторам антиноцицептивной системы относят: 1) ά-, β-, γ-эндорфины; 2) энкефалины; 3) динорфины. Эти медиаторы действуют на три вида опиатных рецепторов: μ-, δ-, κ-рецепторы. Наиболее селективным стимулятором μ-рецепторов являются эндорфины, δ-рецепторов – энкефалины, а κ-рецепторов – динорфины. Плотность μ- и κ-рецепторов высокая в коре больших полушарий и в спинном мозгу, средняя – в стволе головного мозга; плотность δ-рецепторов средняя в коре больших полушарий и спинном мозгу, малая – в стволе мозга. Опиоидные пептиды угнетают действие веществ, вызывающих боль, на уровне ноцицепторов, уменьшают возбудимость и проводимость болевой импульсации, угнетают вызванную реакцию нейронов, находящихся в составе цепей, передающих болевую импульсацию. Эти пептиды поступают к нейронам болевой сенсорной системы с кровью и ликвором. Выделяются опиоидные медиаторы в синаптических окончаниях нейронов противоболевой системы. Аналгезирующий эффект эндорфинов высокий в головном и спинном мозге, эффект энкефалинов в этих структурах средний, эффект динорфинов в головном мозге низкий, в спинном мозге – высокий.

    Рис.1. Взаимодействие основных элементов обезболивающей системы первого уровня: ствол мозга – спиной мозг. (светлые кружки – возбуждающие нейроны, черные – тормозящие).

    Рис.2. Механизм работы обезболивающей системы организма второго уровня (гипоталамус – таламус – ствол мозга) с помощью опиоидов.

    Светлые кружки – возбуждающие нейроны, черные - тормозящие.

    Степень выраженности болевого ощущения не определяется одной лишь силой экзогенного или эндогенного болевого воздействия. Во многом оно зависит от соотношения активностей ноцицептивного и антиноцицептивного отделов системы боли, что имеет приспособительное значение.

  • Вопрос 42. Дофамин-, серотонин-, гистамин-, пурин-, ГАМКергические нейроны нервной системы. Пресинаптические рецепторы.
  • Выраженные болевые синдромы в области позвоночника сначала рассматривали как четыре самостоятельных заболевания.
  • Поверхностные ткани снабжены нервными окончаниями различных афферентных волокон (Дж.Эрлангер , Г.С.Гассер , 1924). Наиболее толстые, миелинизированные Аb-волокна обладают тактильной чувствительностью. Они возбуждаются при неболезненных прикосновениях и при перемещении. Эти окончания могут служить как полимодальные неспецифические болевые рецепторы только при патологических условиях, например, вследствие возрастания их чувствительности (сенсибилизации) медиаторами воспаления. Слабое раздражение полимодальных неспецифических тактильных рецепторов приводит к чувству зуда . Порог их возбудимости понижают гистамин и серотонин (Г.Штюттген , 1981).

    Специфическими первичными болевыми рецепторами (ноцирецепторами) служат два других типа нервных окончаний - тонкие миелинизированные Аd-терминали и тонкие немиелинизированные С-волокна, филогенетически более примитивные. Оба эти типа терминалей представлены и в поверхностных тканях, и во внутренних органах. Некоторые участки тела, например, роговица, иннервируются только Аd и С-афферентами. Ноцирецепторы дают чувство боли в ответ на самые разные интенсивные стимулы - механическое воздействие, термический сигнал (обычно, с температурой более 45-47 0 С), раздражающие химикаты, например, кислоты. Ишемия всегда вызывает боль, поскольку провоцирует ацидоз. Мышечный спазм может вызывать раздражение болевых окончаний из-за относительной гипоксии и ишемии, которые он вызывает, а также вследствие прямого механического смещения ноцирецепторов.

    По С-волокнам проводится со скоростью 0,5-2 м/сек медленная, протопатическая, а по миелинизированным, быстропроводящим Аd-волокнам, обеспечивающим скорость проведения от 6 до 30 м/сек, - эпикритическая боль. Кроме кожи, где, по данным А.Г.Бухтиярова (1966), насчитывается не менее 100-200 болевых рецепторов на 1 см 2 , слизистых и роговицы, болевыми рецепторами обоих типов обильно снабжены надкостница (в чём убеждается каждый футболист, получающий при подкате удар по передне-внутренней поверхности голени), а также сосудистые стенки, суставы, мозговые синусы и париетальные листки серозных оболочек.

    В висцеральных листках этих оболочек и внутренних органах болевых рецепторов гораздо меньше. К тому же, в паренхиме внутренних органов имеются, исключительно, С-волокна протопатической чувствительности, достигающие спинного мозга в составе вегетативных нервов. Поэтому висцеральную боль труднее локализовать, чем поверхностную. Кроме того, локализация висцеральной боли зависит от феномена “отраженных болей”, механизмы которого рассматриваются ниже. Париетальные брюшина, плевра, перикард, капсулы ретроперитонеальных органов и часть брыжейки имеют не только медленные протопатические С-волокна, но и быстрые эпикритические Аd, связанные со спинным мозгом спинальными нервами. Поэтому боль от их раздражения и повреждения намного острее и чётче локализована. Хирурги еще в доанестезиологическую эпоху заметили, что разрезы кишки менее болезненны, чем рассечение пристеночного листка брюшины. Боли при нейрохирургических операциях максимальны в момент рассечения мозговых оболочек, в то же время кора больших полушарий обладает очень незначительной и строго локальной болевой чувствительностью. Вообще, такой распространённый симптом, как головная боль , практически всегда связан с раздражением болевых рецепторов вне самой ткани мозга. Экстракраниальной причиной головной боли могут быть процессы, локализованные в синусах костей головы, спазм цилиарной и других глазных мышц, тоническое напряжение мышц шеи и скальпа. Интракраниальные причины головной боли - это, в первую очередь, раздражение ноцирецепторов мозговых оболочек. При менингите сильнейшие головные боли охватывают всю голову. Весьма серьёзную головную боль вызывает раздражение ноцирецепторов в мозговых синусах и артериях, особенно в бассейне средне-мозговой артерии. Даже незначительные потери цереброспинальной жидкости (около 20 мл) могут спровоцировать головную боль, особенно, в вертикальном положении тела, поскольку плавчесть мозга меняется, и при уменьшении гидравлической подушки раздражаются болевые рецепторы его оболочек. С другой стороны, избыток цереброспинальной жидкости и нарушение ее оттока при гидроцефалии, отек головного мозга, его набухание при внутриклеточной гипергидратации, полнокровие сосудов мозговых оболочек, вызванное цитокинами при инфекциях, локальные объемные процессы - также провоцируют “самую частую жалобу” - головную боль, так как при этом увеличивается механическое воздействие на болевые рецепторы окружающих собственно мозг структур. Обший принцип локализации головных болей таков, что затылочные боли часто отражают раздражение ноцирецепторов сосудов и мозговых оболочек под tentorium, а надпалаточные раздражители и стимуляция верхней поверхности самой палатки проявляются лобно-теменными болями. Знакомая очень значительной части человечества “головная боль с похмелья” имеет комплексный патогенез, включая индуцированное алкоголем полнокровие мозговых оболочек и внутриклеточную гипергидратацию. Патофизиология некоторых форм головной боли, тесно связанных с гуморальными медиаторами болевой и антиболевой систем и с проводниковыми механизмами этих систем, в частности, мигрени, отдельно рассматривается ниже.

    Паренхима селезёнки, почки, печени и легкого совершенно лишена ноцирецепторов. Зато ими богато снабжены бронхи, желчевыводящие пути, капсулы и сосуды этих органов. Даже значительные по размеру абсцессы печени или лёгкого могут быть почти безболезненными. Однако, плеврит или холангит порой дают серьёзный болевой синдром, сами по себе не будучи тяжёлыми. Висцеральные болевые рецепторы отличаются ещё и тем, что развивают сравнительно слабый ответ на строго локальное повреждение органа, например, хирургический разрез. Однако, при диффузном вовлечении ткани в альтерацию (на фоне ишемии, при действии литических ферментов и раздражающих химикатов, при спазмах и перерастяжении полых органов), их чувствительность под воздействием медиаторов воспаления стремительно растёт, и от них исходит сильная импульсация.

    Болевые рецепторы претендуют на уникальное положение в человеческом теле. Это единственный тип чувствительных рецепторов, который не подлежит какой бы то ни было адаптации или десенсибилизации под воздействием длящегося или повторяющегося сигнала. Ноцирецепторы не повышают при этом порог своей возбудимости, как это делают другие, например, холодовые сенсоры. Следовательно, рецептор не “привыкает” к боли. Более того, в ноцирецептивных нервных окончаниях имеет место прямо противоположное явление - сенсибилизация болевых рецепторов сигналом. При воспалении, повреждениях тканей (особенно, внутренних органов) и при повторных и длительных болевых раздражителях порог возбудимости ноцирецепторов снижается. Даже легчайшие прикосновения к ожоговой поверхности крайне болезненны. Это явление называется первичной гиперальгезией . Пальпация внутренних органов, даже если она интенсивна, не причиняет боли, если нет их воспаления. Однако при воспалении чувствительность молчащих внутренних ноцирецепторов настолько увеличивается, что врач регистрирует болевые симптомы. Поколачивание по области почек, безболезненное в отсутствие их повреждений, ведет к болевому ощущению в случае, если почечные ноцирецепторы сенсибилизированы медиаторами воспаления (положительный симптом Пастернацкого). Легко отметить, что если бы происходила адаптация болевых рецепторов, все хронические деструктивные процессы были бы безболезненны и боль утратила бы свою функцию сигнала, который, по выражению И.П.Павлова , “побуждает отбросить то, что угрожает жизненному процессу”.

    Называя болевые сенсоры рецепторами, мы должны подчеркнуть, что применение к ним этого термина носит условный характер - ведь это свободные нервные окончания, лишённые каких бы то ни было специальных рецепторных приспособлений.

    Нейрохимические механизмы раздражения ноцирецепторов хорошо изучены. Их основным стимулятором является брадикинин. В ответ на повреждение клеток близ ноцирецептора освобождаются этот медиатор, а также простагландины, лейкотриены и ионы калия и водорода. Простагландины и лейкотриены сенсибилизируют ноцирецепторы к кининам, а калий и водород облегчают их деполяризацию и возникновение в них электрического афферентного болевого сигнала. Возбуждение распространяется не только афферентно, но и антидромно, в соседние ветви терминали. Там оно приводит к секреции вещества Р. Этот нейропептид, о котором уже упоминалось, вызывает вокруг терминали паракринным путём гиперемию, отек, дегрануляцию тучных клеток и тромбоцитов. Освобождаемые при этом гистамин, серотонин, простагландины сенсибилизируют ноцирецепторы, а химаза и триптаза мастоцитов усиливают продукцию их прямого агониста - брадикинина. Следовательно, при повреждении ноцирецепторы действуют и как сенсоры, и как паракринные провокаторы воспаления. Вблизи ноцирецепторов, как правило, располагаются симпатические норадренергические постганглионарные нервные окончания, которые способны модулировать чувствительность ноцирецепторов. При травмах периферических нервов нередко развивается так называемая каузалгия - патологически повышенная чувствительность ноцирецепторов в области, иннервируемой повреждённым нервом, сопровождаемая жгучими болями и даже признаками воспаления без видимых местных повреждений. Механизм каузалгии связан с гипералгизующим действием симпатических нервов, в частности, выделяемого ими норадреналина, на состояние болевых рецепторов. Возможно, при этом происходит секреция вещества Р и других нейропептидов симпатическими нервами, что и обусловливает воспалительные симптомы. Явление каузалгии представляет собой, в полном смысле, нейрогенное воспаление, хотя оно вызывается не нервным, а паракринным способом (см. также выше, о роли нервной регуляции в воспалении).

    Как впервые предположили У.Кэннон и А.Розенблют (1951) паракринная безымпульсная нейропептидэргическая деятельность нервных окончаний в тканях и составляет реальную основу явления, которое в течение более чем 100 лет, от Ф. Мажанди (1824) до Л.А. Орбели (1935) и А.Д. Сперанского , (1937), именовали нервной трофикой .

    Дата добавления: 2015-05-19 | Просмотры: 985 | Нарушение авторских прав


    | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |