• Повышенная вариабельность сердечного ритма. Влияние некоторых лекарственных препаратов различных фармакологических групп на вариабельность ритма сердца

    Автономная нервная система (АНС) играет важную роль, не только что касается физиологии, но также что касается различных патологических процессов, таких как диабетическая нейропатия, инфаркт миокарда (ИМ) и застойная сердечная недостаточность (ЗСН). Дисбаланс в автономной системе, связанный с увеличением активности симпатического отдела и снижением вагусного тонуса, сильно влияет на патофизиологию аритмогенеза и наступление внезапной остановки сердца.

    Среди имеющихся неинвазивных методов оценки состояния вегетативной регуляции был выделен простой, неинвазивный метод оценки симпатовагусного баланса на синусово - предсердном уровне, а именно анализ вариабельности сердечного ритма (ВСР). Этот метод был использован в различных клинических ситуациях, включая диабетическую нейропатию, инфаркт миокарда, внезапную смерть и застойную сердечную недостаточность.

    Стандартными методами измерений, включёнными в анализ ВСР, являются измерения во временной области, геометрические методы измерений и измерения в частотном диапазоне (области). Использование долгосрочного или краткосрочного мониторинга зависит от типа исследования, которое надлежит провести.

    Установленные клинические данные, основанные на многочисленных исследованиях, опубликованных за последнее десятилетие, указывают на то, что пониженная общая ВСР является сильным прогностическим фактором увеличения смертности от любых заболеваний сердца и/или аритмической смертности, особенно у пациентов, подверженных риску после инфаркта миокарда или с застойной сердечной недостаточностью.

    В данной статье описывается механизм, параметры и использование ВСР в качестве маркера, отражающего действие симпатического и вагусного компонентов АНС на синусовый узел, а также в качестве клинического инструмента скрининга и выявления пациентов, особенно подверженных риску смерти от остановки сердца.

    Проведённые за последние два десятилетия многочисленные исследования, как на животных, так и на людях, показали наличие значительной взаимосвязи между АНС и смертностью от сердечно -сосудистых заболеваний, особенно у пациентов с инфарктом миокарда и застойной сердечной недостаточностью. Расстройство АНС и её дисбаланс, заключающийся или в увеличении симпатической активности или в снижении вагусной активности, может привести к желудочковой тахиаритмии и внезапной остановке сердца, которая в настоящее время является одной из основных причин смертности от сердечно -сосудистых заболеваний. Здесь описываются различные методы, с помощью которых можно оценить состояние АНС, которые включают тесты на сердечно – сосудистые рефлексы, биохимические и сцинтиграфические тесты. Методы, дающие прямой доступ к рецепторам на клеточном уровне или к передаче нервных импульсов доступны не всегда. В последние годы неинвазивные методы, основывающиеся на электрокардиограмме (ЭКГ) были использованы в качестве маркеров модуляции деятельности сердца автономной нервной системой, они включают определение ВСР, барорефлекторной чувствительности (БРЧ), QT интервала и турбулентности сердечного ритма (ТСР) – нового метода, основывающегося на изменениях длительности цикла синусового ритма после единичного преждевременного сокращения желудочков. Среди данных методов был выделен простой, неинвазивный метод оценки симпатовагусного баланса на синусово - предсердном уровне, а именно анализ вариабельности сердечного ритма (ВСР).

    Автономная нервная система и сердце

    Хотя автоматизм присущ различным тканям сердца, обладающим пейсмекерными свойствами, электрическая и сократительная активность миокарда в большой степени модулируется АНС. Эта регуляция со стороны нервной системы осуществляется посредством взаимосвязи между симпатическим и вагусным влиянием. В большинстве физиологических состояний эфферентные симпатический и парасимпатический отделы выполняют противоположные функции: симпатическая система усиливает автоматизм, в то время как парасимпатическая система угнетает его. Влияние вагусного стимулирования на пейсмекерные клетки сердца вызывает гиперполяризацию и снижает уровень деполяризации, а симпатическое стимулирование вызывает хронотропные эффекты, путём увеличения уровня пейсмекерной деполяризации. Оба отдела АНС влияют на активность ионного канала, вовлечённого в регулирование деполяризации пейсмекерных клеток сердца.
    Расстройства АНС проявлялись при различных условиях, таких как диабетическая нейропатия и коронарная болезнь сердца, особенно в случае с инфарктом миокарда. Нарушение контроля над сердечно – сосудистой системой со стороны автономной нервной системы, связанное с увеличением симпатического и снижением парасимпатического тонуса, играет важную роль в возникновении коронарной болезни сердца и генезисе опасных для жизни желудочковых аритмий. Возникновение ишемии и/или некроза миокарда может повлечь за собой механическую деформацию афферентных и эфферентных волокон АНС, обусловленную геометрическими изменениями в некротических и не сокращающихся сегментах сердца. В условиях ишемии и/или некроза миокарда недавно было обнаружено присутствие явления электрического ремоделирования, обусловленного локальным ростом нервных клеток и дегенерацией на уровне клетки миокарда. В целом, у пациентов с заболеванием коронарных артерий, перенёсших инфаркт миокарда, автономная функция сердца, находящаяся под влиянием возросшего симпатического и сниженного вагусного тонуса, создаёт предпосылки для возникновения комплексных опасных для жизни аритмий, так как они изменяют автоматизм сердца, проводимость и важные гемодинамические переменные.

    Определение и механизмы вариабельности сердечного ритма

    Вариабельность сердечного ритма является неинвазивным, электрокардиографическим маркером, отражающим действие симпатического и вагусного компонента АНС на синусовый узел сердца. Она показывает общее количество вариаций моментных значений интервалов HR и интервалов RR (интервалы между комплексами QRS нормальной синусовой деполяризации). Таким образом, ВСР анализирует исходную тоническую активность автономной системы. При нормальном сердце, функционирующем как единое целое с АНС, отмечаются непрерывные физиологические вариации синусовых циклов, что указывает на сбалансированное симпатовагусное состояние и нормальную ВСР. При повреждённом сердце, перенёсшем некроз миокарда, изменения в активности афферентных и эфферентных волокон АНС и в локальной невральной регуляции способствуют наступлению симпатовагусного дисбаланса, характеризующегося снижением ВСР.

    Измерение вариабельности сердечного ритма

    Анализ ВСР включает в себя ряд измерений вариаций последовательных интервалов RR синусового происхождения, которые дают представление о тонусе автономной системы. На ВСР могут влиять различные физиологические факторы, такие как пол, возраст, циркадный ритм, дыхание и положение тела. Измерения ВСР являются неинвазивными и обладающими высокой годностью к воспроизведению. В настоящее время большинство производителей оборудования мониторинга по Холтеру рекомендуют программы анализа ВСР, встроенные в приборные панели. Хотя компьютерный анализ записей магнитной ленты был усовершенствован, для того чтобы измерить большинство параметров ВСР требуется вмешательство человека, чтобы распознать ложные экстрасистолы, артефакты и искажения скорости движения магнитной ленты, которые могут исказить временные интервалы.

    В 1996 году Рабочая группа Европейского Общества кардиологов (ESC) и Североамериканское общество кардиостимуляции и электрофизиологии (NASPE) определили и установили стандарты измерения, физиологической интерпретации и клинического использования ВСР. Измерения во временной области (диапазоне), геометрические методы измерений и измерения в частотной области в настоящее время включают в себя стандартные клинически используемые параметры.

    Анализ во временной области

    При помощи анализа во временной области измеряются изменения частоты сердечных сокращений на протяжении времени или на основе интервалов между смежными нормальными циклами сердечной деятельности. В непрерывной записи ЭКГ детектируется каждый QRS комплекс, а затем определяются нормальные интервалы RR (NN интервалы), обусловленные деполяризацией клеток синусового узла, или мгновенная частота сердечных сокращений. Рассчитываемые во временной области переменные могут быть простыми, такими как средний интервал RR, средняя частота сердечных сокращений, разница между самым длинным и самым коротким интервалом RR, или разница между частотой сердечных сокращений ночью и днём; а также более комплексными, основывающимися на статистических измерениях. Данные статистические показатели, измеряемые во временной области, делятся на две категории, а именно: полученные при непосредственном измерении интервалов между сердечными сокращениями или при измерении переменных, получаемых непосредственно из интервалов, или при измерении мгновенной частоты сердечных сокращений; а также показатели, получаемые от измерения разницы между смежными интервалами NN. В приведенной ниже таблице дан перечень наиболее часто используемых во временной области параметров. Параметрами первой категории являются SDNN, SDANN и SD, а параметры второй категории являются RMSSD и pNN50.

    SDNN – это общий показатель ВСР, отражает все долговременные компоненты и циркадные ритмы, ответственные за вариабельность в течение периода записи. SDANN является показателем вариабельности в среднем за 5 минут. Таким образом, данный показатель предоставляет информацию долгосрочного характера. Это чувствительный показатель к компонентам низкой частоты, таким как физическая активность, изменения положения, циркадный ритм. Считается, что SD в основном отражает дневные/ночные изменения ВСР. RMSSD и pNN50 - наиболее часто используемые параметры, определяемые на основе различий между интервалами. Данные измерения относятся к изменениям ВСР в краткосрочном периоде и не зависят от дневных/ночных вариаций. Они отражают отклонения в тонусе автономной системы, которые преимущественно являются вагус- опосредованными. По сравнению с pNN50, RMSSD выглядит более стабильным и в клиническом использовании ему должно быть отдано предпочтение.

    Геометрические методы

    Геометрические методы основываются и состоят в преобразовании последовательностей NN интервалов. Имеются различные геометрические формы, используемые в оценке ВСР: гистограмма, триангулярный индекс ВСР и его модификация, треугольная интерполяция гистограммы NN интервалов, а также метод, основывающийся на пятнах Лоренца или Пуанкаре. При помощи гистограммы оценивается связь между общим количеством выявленных RR интервалов и варьированием RR интервалов. Для триангулярного индекса ВСР самый высокий пик гистограммы учитывается как точка треугольника, базовое основание которого соответствует количественному значению изменчивости RR интервалов, его высота соответствует наиболее часто наблюдаемой длительности RR интервалов, и его площадь соответствует общему количеству всех RR интервалов, задействованных в его построении. Триангулярный индекс ВСР даёт оценку общей ВСР.

    Геометрические методы подвергаются меньшему влиянию со стороны качества записанных данных и могут считаться альтернативой статистическим параметрам, которые не так легко получаются. Однако время продолжительности записи должно быть как минимум 20 минут, то есть это означает, что кратковременные записи не могут оцениваться при помощи геометрических методов.

    Из всего многообразия имеющихся методов оценки во временном диапазоне и геометрических методов Рабочая группа Европейского Общества кардиологов (ESC) и Североамериканское общество кардиостимуляции и электрофизиологии (NASPE) рекомендовали к использованию четыре метода измерений с целью оценки ВСР: SDNN, SDANN, RMSSD и триангулярный индекс ВСР.

    Анализ в частотной области

    Анализ в частотной области (спектральная плотность мощности) показывает периодические колебания сигналов частоты сердечных сокращений в разрезе различных частот и амплитуд; а также предоставляет информацию касательно относительной интенсивности колебаний (называемой изменчивостью или мощностью) синусового ритма сердца. Схематически, спектральный анализ можно сравнить с результатами, получаемыми, когда белый свет проходит сквозь призму, в результате чего появляются различные световые волны, различного цвета и длины. Спектральный анализ мощности может быть проведён двумя способами: 1) непараметрическим методом, посредством быстрого преобразования Фурье (FFT), который характеризуется наличием дискретных пиков для отдельных частотных компонентов, и 2) параметрическим методом, а именно оценкой авторегрессионной модели, приводящей к формированию непрерывного плавного спектра активности. В то время как FFT является простым и быстрым методом, параметрический метод является более сложным и предполагает необходимость проверки того, подходит ли выбранная модель для анализа.

    При использовании FFT отдельные RR интервалы, сохранённые в компьютере, преобразовываются в полосы с различными спектральными частотами. Этот процесс схож со звучанием симфонического оркестра в разрезе нотных составляющих. Полученные результаты могут быть преобразованы в Герцы (Гц), путём деления на среднюю длину интервалов RR.

    Спектр мощности представлен полосами с частотами от 0 до 0,5Гц, которые могут быть классифицированы по четырём диапазонам: ультранизкочастотный диапазон (ULF), диапазон очень низкой частоты (VLF), низкочастотный диапазон (LF) и высокочастотный диапазон (HF).

    Переменная Ед. измерения Описание Диапазон частот
    Общая мощность мс2 Изменчивость всех NN интервалов
    УНЧ мс2 Ультранизкая частота
    ОНЧ мс2 Очень низкая частота
    НЧ мс2 Мощность в диапазоне низких частот 0,04–0,15 Гц
    ВЧ мс2 Мощность в диапазоне высоких частот 0,15–0,4 Гц
    НЧ/ВЧ отношение Отношение мощности в диапазоне низких частот к мощности в диапазоне высоких частот

    Короткие (краткосрочные) записи в спектре (5 - 10 минут) характеризуются наличием ОНЧ, ВЧ и НЧ компонентов, в то время как длинные (долгосрочные) записи дополнительно к трём другим включают УНЧ компонент. В вышеуказанной таблице приведены наиболее часто используемые в частотной области параметры. Компоненты спектра анализируются по частоте (Герц) и амплитуде, которая оценивается площадью (или спектральной плотностью мощности) каждого компонента. Таким образом, для абсолютных значений, используются возведённые в квадрат единицы, выражаемые в мс в квадрате (мс2),. Могут использоваться натуральные логарифмы (ln) значений мощности, обусловленные ассиметрией распределения. Мощность в НЧ и ВЧ диапазоне может выражаться в абсолютных величинах (мс2) или в нормализованных единицах (не). Приведение НЧ и ВЧ к нормализованному значению осуществляется путём отнимания от общей мощности компонента ОНЧ. Приведение к нормализованному значению имеет склонность с одной стороны уменьшать шумовые помехи, обусловленные артефактами и, с другой стороны, минимизировать влияние изменений общей мощности на НЧ и ВЧ компоненты. Это удобно при оценке влияния от различных вмешательств на одном и том же объекте (постепенное изменение угла наклона) или при сравнении объектов с большими различиями в общей мощности. Перевод в нормализованные единицы осуществляется следующим образом:

    НЧ или ВЧ нормализованные (не) = (НЧ или ВЧ (мс2))*100/ (общая мощность (мс2) – ОНЧ (мс2))

    Общая мощность вариабельности RR интервалов – это общая изменчивость, соответствующая сумме по четырём диапазонам спектра, НЧ, ВЧ, УНЧ и ОНЧ. Компонент ВЧ главным образом определяется как маркер вагусной модуляции. Этот компонент опосредован дыханием и поэтому определяется частотой дыхания. НЧ компонент модулируется как симпатическим, так и парасимпатическим отделом нервной системы. В этом смысле его интерпретация более спорна. Некоторые учёные считают мощность в НЧ диапазоне, особенно выраженную в нормализованных единицах, средством измерения симпатических модуляций; другие же интерпретируют её как комбинацию симпатической и парасимпатической активности. Они достигают консенсуса в том, что она отражает смесь обоих входящих сигналов автономной системы. На практике, увеличение компонента НЧ (угол наклона, психический и/или физический стресс, симпатомиметические фармакологические средства) в основном считалось последствием активности симпатического отдела. И наоборот, бета - адренергическая блокада приводила к снижению мощности в НЧ диапазоне. Однако в некоторых условиях, связанных с перевозбуждением симпатического отдела, например, у пациентов с прогрессирующей застойной сердечной недостаточностью, было обнаружено, что НЧ компонент стремительно снижается, тем самым отражая снижение отклика синусового узла на нервные входные импульсы.

    Отношение НЧ/ВЧ отражает общий симпатовагусный баланс и может использоваться как средство измерения данного баланса. В среднем у нормального взрослого в состоянии отдыха, это отношение в основном составляет между 1 и 2.

    УНЧ и ОНЧ являются компонентами спектра с очень низкими колебаниями. УНЧ компонент может отражать циркадный и нейроэндокринный ритмы, а ОНЧ компонент – ритм в долгосрочном периоде. Было выявлено, что ОНЧ компонент является основным показателем физической активности, и предложено считать его маркером симпатической активности.

    Корреляции между показателями во временной и частотной области и нормальными номинальными значениями

    Установлены корреляции между параметрами временной и частотной области: pNN50 и RMSSD находятся в корреляции между собой и с мощностью в ВЧ диапазоне (r = 0,96), SDNN и SDANN показатели находятся в сильной корреляции с общей мощностью и компонентом УНЧ. Нормальные номинальные значения и значения у пациентов с инфарктом миокарда для стандартных измерений вариабельности сердечного ритма.

    Предел применения стандартных измерений ВСР

    Так как ВСР связана с изменениями интервалов RR, то её измерение ограничено пациентами с синусовым ритмом, а также теми, у кого имеется малое количество эктопических систол. В этом смысле примерно 20-30% пациентов в постинфарктном периоде, перенесших инфаркт миокарда, с высокой степенью риска, исключаются из какого-либо анализа ВСР по причине частой эктопии или наличия предсердных аритмий, особенно атриальной фибрилляции. Последнюю можно наблюдать у 15-30% пациентов с застойной сердечной недостаточностью, тем самым исключая их из анализа ВСР.

    Нелинейные методы (фрактальный анализ) измерения ВСР

    Нелинейные методы базируются на теории хаоса и фрактальной геометрии. Хаос определён как изучение многоаспектных, нелинейных и непериодических систем. Хаос описывает природные системы иначе, так как он может учитывать хаотичность и непериодичность природы. Возможно, теория хаоса сможет помочь лучше понять динамику частоты сердечных сокращений, принимая во внимание то, что здоровый сердечный ритм слегка нерегулярен и в некоторой степени хаотичен. В ближайшем будущем нелинейные фрактальные методы могут дать новые представления о динамике частоты сердечных сокращений в контексте физиологических изменений и в ситуациях, сопряжённых с высоким риском, особенно, что касается пациентов, перенесших инфаркт миокарда или в контексте внезапной смерти.

    В недавно полученных сведениях высказывается мнение о возможности того, что фрактальный анализ в сравнении со стандартными измерениями ВСР более эффективно выявляет аномальный характер колебаний RR.

    Анализ вариабельности сердечного ритма (ВСР) является быстро развивающимся разделом кардиологии, в котором наиболее полно реализуются возможности вычислительных методов. Это направление во многом инициировано пионерскими работами известного отечественного исследователя Р.М. Баевского в области космической медицины, который впервые ввел в практику ряд комплексных показателей, характеризующих функционирование различных регуляторных систем организма. В настоящее время стандартизация в области ВСР осуществляется рабочей группой Европейского кардиологического общества и Северо-американского общества стимуляции и электрофизиологии.

    Cердце в идеале способно реагировать на малейшие изменения в потребностях многочисленных органов и систем. Вариационный анализ ритма сердца дает возможность количественной и дифференцированной оценки степени напряженности или тонуса симпатического и парасимпатического отделов ВНС, их взаимодействия в различных функциональных состояниях, а также деятельности подсистем, управляющих работой различных органов. Поэтому программа-максимум этого направления состоит в разработки вычислительно-аналитических методов комплексной диагностики организма по динамике сердечного ритма.

    Методы ВСР не предназначены для диагностики клинических патологий, где, как мы видели выше, хорошо работают традиционные средства визуального и измерительного анализа. Преимущество данного раздела состоит в возможности обнаружить тончайшие отклонения в сердечной деятельности, поэтому его методы особенно эффективны для оценки общих функциональных возможностей организма в норме, а также ранних отклонений, которые в отсутствие необходимых профилактических процедур постепенно могут развиться в серьезные заболевания. Методика ВСР широко используется и во многих самостоятельных практических приложениях, в частности, в холтеровском мониторинге и при оценке тренированности спортсменов, а также в других профессиях, связанных с повышенными физическими и психологическими нагрузками (см. в конце раздела).

    Исходными материалом для анализа ВСР являются непродолжительные одноканальные записи ЭКГ (от двух до нескольких десятков минут), выполняемые в спокойном, расслабленном состоянии или при функциональных пробах. На первом этапе по такой записи вычисляются последовательные кардиоинтервалы (КИ), в качестве реперных (граничных) точек которых используются R-зубцы, как наиболее выраженные и стабильные компоненты ЭКГ.

    Методы анализа ВСР обычно группируются в следующие четыре основные раздела:

    • интервалография;
    • вариационная пульсометрия;
    • спектральный анализ;
    • корреляционая ритмография.

    Другие методы. Для анализа ВСР используется и ряд менее употребительных методов, связанных с построением трехмерных скаттерграмм, дифференциальных гистограмм, вычислением автокорреляционных функций, триангуляционной интерполяции, вычислением индекса Святого Георга . В оценочном и диагностическом планах эти методы можно охарактеризовать как научно-поисковые, и они практически не привносят принципиально новой информации.

    Холтеровский мониториг. Длительное мониторирование ЭКГ по Холтеру предполагает многочасовую или многосуточную одноканальную непрерывную запись ЭКГ пациента, находящегося в своих обычных жизненных условиях. Запись осуществляется портативным носимым регистратором на магнитный носитель. В связи с большой временной продолжительностью последующее исследование ЭКГ-записи осуществляется вычислительными методами. При этом обычно строится интервалограмма, определяются участки резкого изменения ритмики, ищутся экстрасистолические сокращения и асистолические паузы с подсчетом их общего количества и классификацией экстрасистол по форме и локализации.

    Интервалография В этом разделе преимущественно используются методы визуального анализа графиков изменения последовательных КИ (интервалограмма или ритмограмма). Это позволяет оценить выраженность различных ритмов (в первую очередь - дыхательного ритма, см. рис. 6.11) выявить нарушения вариабельности КИ (см. рис. 6.16, 6.18, 6.19), асистолии и экстрасистолии. Так на рис. 6.21 приведена интервалограмма с тремя пропусками сердечных сокращений (три удлиненных КИ в правой части), сменяющимися экстрасистолой (укороченный КИ), за которой сразу следует четвертый пропуск сердечного сокращения.

    Рис. 6.11. Интервалограмма глубокого дыхания

    Рис. 6.16. Интервалограмма фибрилляции

    Рис. 6.19. Интервалограмма пациента с нормальным самочувствием, но с явными нарушениями в ВСР

    Интервалограмма позволяет выявить важные индивидуальные особенности действия регуляторных механизмов в реакциях на физиологические пробы. В качестве показательного примера рассмотрим противоположные типы реакций на пробу задержки дыхания. Рис. 6.22 демонстрирует реакции ускорения ЧСС при задержке дыхания. Однако у испытуемого (рис. 6.22, а) после начального резкого спада наступает стабилизация с тенденцией к некоторому удлинению КИ, в то время как у испытуемого (рис. 6.22, б) начальный резкий спад продолжается более медленным укорочением КИ, при этом проявляются нарушения вариабельности КИ с дискретным характером их чередования (что для данного испытуемого не проявлялось в состоянии релаксации). Рисунок 6.23 представляет реакции противоположного характера с удлинением КИ. Однако, если для испытуемого (рис. 6.23, а) имеет место близкая к линейной возрастающая тенденция, то для испытуемого (рис. 23, б) в этой тенденция проявляется высокоамплитудная медленноволновая активность.

    Рис. 6.23. Интервалограммы для проб задержки дыхания с удлинением КИ

    Вариационная пульсометрия В этом разделе преимущественно используются средства описательной статистики для оценки распределения КИ с построением гистограммы, а также ряд производных показателей, характеризующих функционирование различных регуляторных систем организма, и специальных международных индексов. Для многих из этих индексов на большом экспериментальном материале определены клинические границы нормы в зависимости от пола и возраста, а также ряд последующих числовых интервалов, отвечающих дисфункциям той или иной степени.

    Гистограмма. Напомним, что гистограмма представляет собой график плотности вероятности выборочного распределения. В данном случае высота конкретного столбика выражает процент присутствующих в записи ЭКГ кардиоинтервалов заданного диапазона длительности. Горизонтальная шкала длительностей КИ для этого разбивается на последовательные интервалы равной величины (бины). Для сравнимости гистограмм международный стандарт устанавливает размер бина равным 50 мс.

    Нормальная сердечная деятельность характеризуется симметричной, куполообразной и цельной гистограммой (рис. 6.24). При релаксации с неглубоким дыханием гистограмма сужается, при углублении дыхания - уширяется. При наличии пропусков сокращений или экстрасистол на гистограмме появляются отдельно стоящие фрагменты (соответственно, справа или слева от основного пика, рис. 6.25). Несимметричная форма гистограммы свидетельствует об аритмичном характере ЭКГ. Пример такой гистограммы приведен на рис. 6.26, а. Для выяснения причин такой асимметрии бывает полезно обратиться к интервалограмме (рис. 6.26, б), которая в данном случае показывает, что асимметрия определена скорее не патологической аритмией, а наличием нескольких эпизодов смены нормальной ритмики, которые могут быть вызваны эмоциональными причинами или же сменами глубины и частоты дыхания.

    Рис. 6.24. Симметричная гистограмма

    Рис. 6.25. Гистограмма с пропусками сокращений

    а - гистограмма; б - интервалограмма

    Показатели. Кроме гистографического представления в вариационной пульсометрии вычисляется и целый ряд числовых оценок: описательная статистика, показатели Баевского, индексы Каплана и ряд других.

    Показатели описательной статистики дополнительно характеризуют распределение КИ:

    • размер выборки N;
    • вариационный размах dRR - разность меду максимальным и минимальным КИ;
    • среднее значение RRNN (норма в перерасчете на ЧСС составляет: 64±2,6 для возрастов 19-26 лет и 74±4,1 для возрастов 31-49 лет);
    • стандартное отклонение SDNN (норма 91±29);
    • коэффициент вариации CV=SDNN/RRNN*100%;
    • коэффициенты асимметрии и эксцесса, характеризующие симметричность гистограммы и выраженность ее центрального пика;
    • мода Mo или значение КИ, делящее всю выборку пополам, при симметричном распределении мода близка к среднему значению;
    • амплитуда моды AMo - процент КИ, попадающих в модальный бин.
    • RMSSD - корень квадратный из средней суммы квадратов разностей соседних КИ (практически совпадает со стандартным отклонением SDSD, норма 33±17), имеет устойчивые статистические свойства, что особенно актуально для коротких записей;
    • pNN50 - процент соседних кардиоинтервалов, отличающихся друг от друга более чем на 50 мс (норма 7±2%), также мало изменятся в зависимости от длины записи.

    Показатели dRR, RRNN, SDNN, Mo выражаются в мс. Наиболее значимым считается AМo, отличающаяся устойчивостью к артефактам и чувствительностью к изменению функционального состояния. В норме у людей до 25 лет AМo не превышает 40%, с возрастом увеличивается на 1% каждые 5 лет, превышение 50% расценивается как патология.

    Показатели Р.М. Баевского :

    • индекс вегетативного равновесия ИВР=AMo/dRR указывает на соотношение между активностью симпатического и парасимпатического отделов ВНС;
    • вегетативный показатель ритма ВПР=1/(Mo*dRR) позволяет судить о вегетативном балансе организма;
    • показатель адекватности процессов регуляции ПАПР=AMo/Mo отражает соответствие между активностью сипатического отдела ВНС и ведущим уровнем синусового узла;
    • индекс напряжения регуляторных систем ИН=AMo/(2*dRR*Mo) отражает степень централизации управления сердечным ритмом.

    Наиболее значимым в практике является индекс ИН, адекватно отражающий суммарный эффект сердечной регуляции. Границы нормы составляют: 62,3±39,1 для возрастов 19-26 лет. Показатель чувствителен к усилению тонуса симпатической ВНС, небольшая нагрузка (физическая или эмоциональная) увеличивает его в 1,5-2 раза, при значительных нагрузках рост составляет 5-10 раз.

    Индексы А.Я. Каплана. Разработка этих индексов преследовала задачу оценки медленно и быстроволновых компонентов вариабельности КИ без привлечения сложных методов спектрального анализа:

    • индекс дыхательной модуляции (ИДМ) оценивает степень влияния дыхательного ритма на вариабельность КИ:
    • ИДМ=(0,5* RMSSD/RRNN)*100%;
    • индекс симпато-адреналового тонуса: САТ=АМо/ИДМ*100%;
    • индекс медленноволновой аритмии: ИМА=(1-0,5*ИДМ/CV)*100%-30
    • индекс перенапряжения регуляторных систем ИПС представляет собой произведение САТ на отношение измеренного времени распространения пульсовой волны к времени распространения в состоянии покоя, диапазон значений:

    40-300 - рабочее нервно–психическое напряжение;

    900-3000 - перенапряжение, необходимость отдыха;

    3000-10000 - перенапряжение, опасное для здоровья;

    свыше- необходимость срочного выхода из текущего состояния с обращением к врачу–кардиологу.

    Индекс САТ в отличие от ИН учитывает только быстрый компонент вариативности КИ, так как содержит в знаменателе не суммарный размах КИ, а нормированную оценку изменчивости между последовательными КИ - ИДМ. Таким образом, чем меньше вклад высокочастотного (дыхательного) компонента ритма сердца в суммарную вариативность КИ, тем выше индекс САТ. Он очень эффективен для общей предварительной оценки сердечной деятельности в зависимости от возраста, границы нормы составляют: 30-80 до 27 лет, 80-250 от 28 до 40 лет, 250-450 от 40 до 60 лет, и 450-800 для старших возрастов. Вычисление САТ производят на 1-2 минутных интервалах в спокойном состоянии, выход за верхнюю возрастную границу нормы является признаком нарушений в сердечной деятельности, а выход за нижнюю границу - благоприятным признаком.

    Естественным дополнением САТ является ИМА, который прямо пропорционален дисперсии КИ, но не суммарной, а оставшейся за вычетом быстрого компонента вариативности КИ. Границы нормы ИМА составляют: 29,2±13,1 для возрастов 19-26 лет.

    Индексы оценки отклонений в вариабельности. Большинство рассмотренных показателей являются интегральными, поскольку вычисляются на достаточно протяженных последовательностях КИ, при этом ориентированы именно на оценку средней вариабельности КИ и чувствительны к различиям в таких средних значениях. Эти интегральные оценки сглаживают локальные вариативности и хорошо работают в условиях стационарности функционального состояния, например, при релаксации. В то же время интересно было бы иметь и другие оценки, которые бы: а) хорошо работали и в условиях функциональных проб, т. е. когда сердечный ритм не стационарен, а имеет заметную динамику, например, в виде тренда; б) были чувствительные именно к крайним отклонениям, связанным с малой или повышенной вариабельностью КИ. Действительно, многие незначительные, ранние отклонения в сердечной деятельности не проявляются в покое, но могут быть выявлены в ходе функциональных проб, связанных с повышенной физиологической или психической нагрузкой.

    В этом плане имеет смысл предложить один из возможных альтернативных подходов, позволяющий конструировать показатели ВСР, которые, в отличие от традиционных, можно было бы назвать дифференциальными или интервальными. Такие показатели вычисляются в коротком скользящем окне с последующим усреднением по всей последовательности КИ. Ширину скользящего окна можно выбрать порядка 10 сердечных сокращений, исходя из следующих трех соображений: 1) это соответствует трем-четырем дыханиям, что в определенной степени позволяет нивелировать ведущее влияние дыхательного ритма; 2) на таком сравнительно коротком отрезке сердечный ритм можно считать условно стационарным даже в условиях нагрузочных функциональных проб; 3) такой размер выборки обеспечивает удовлетворительную статистическую устойчивость числовых оценок и применимость параметрических критериев.

    В рамках предложенного подхода нами были сконструированы два оценочных индекса: показатель сердечного стресса ПСС и показатель сердечной аритмии ПСА. Как показало дополнительное исследование, умеренное увеличение ширины скользящего окна немного снижает чувствительность этих индексов и расширяет границы нормы, но эти изменения не носят принципиального характера.

    Индекс ПСС предназначен для оценки «плохой» вариабельности КИ, выражающейся в присутствии КИ одинаковой или очень близкой длительности с различием до 5 мс (примеры таких отклонений приведены на рис. 6.16, 6.18, 6.19). Такой уровень «нечувствительности» выбран из двух соображений: а) он достаточно мал, составляя 10% от стандартного 50 мс бина: б) он достаточно велик, чтобы обеспечить стабильность и сравнимость оценок для записей ЭКГ, выполненных с различным временным разрешением. Среднее значение в норме равно 16,3%, стандартное отклонение - 4,08%.

    Индекс ПСА предназначен для оценки экстравариабельности КИ или уровня аритмии. Он вычисляется как процент КИ, отличающихся от среднего значения более чем на 2 стандартных отклонения. При нормальном законе распределения таких значений будет менее 2,5%. Среднее значение ПСА в норме равно 2,39%, стандартное отклонение - 0,85%.

    Вычисление границ нормы. Часто при вычислении границ нормы используется достаточно произвольная процедура. Выбираются условно «здоровые» пациенты, у которых при поликлиническом наблюдении не обнаружено заболеваний. По их кардиограммам вычисляются показатели ВСР, и по этой выборке определяются средние значения и стандартные отклонения. Такую методику нельзя признать статистически корректной.

    1. Как указано выше, всю выборку надо сначала очистить от выбросов. Граница отклонений и число выбросов у отдельного пациента определяется вероятностью таких выбросов, которая зависит от числа показателей и числа измерений.

    2. Однако далее необходимо произвести чистку по каждому показателю отдельно, поскольку при общей нормативности данных отдельные показатели некоторых пациентов могут резко отличаться от групповых значений. Критерий стандартного отклонения здесь не подходит, поскольку сами стандартные отклонения оказываются смещенными. Такую дифференцированную чистку можно произвести при визуальном изучении графика упорядоченных по возрастанию значений показателя (график Кетле). Следует исключить значения, принадлежащие к концевым, загибающимся, разреженным участкам графика, оставив центральную, плотную и линейную его часть.

    Спектральный анализ Этот метод основан на расчете амплитудного спектра (подробнее см. в разд. 4.4) ряда кардиоинтервалов.

    Предварительная временная перенормировка. Однако спектральный анализ не может быть осуществлен непосредственно над интервалограммой, поскольку в строгом смысле она не является временным рядом: ее псевдоамплитуды (КИi) во времени разделены самими же КИi, т. е. ее временной шаг неравномерен. Поэтому перед вычислением спектра требуется временная перенормировка интервалограммы, которая производится следующим образом. Выберем в качестве постоянного временного шага значение минимального КИ (или его половину), которое обозначим мКИ. Проведем теперь две временные оси друг под другом: верхнюю разметим согласно последовательным КИ, а нижнюю разметим с постоянным шагом мКИ. На нижней шкале будем строить амплитуды аКИ вариабельности КИ следующим образом. Рассмотрим очередной шаг мКИi на нижней шкале, здесь может быть два варианта: 1) мКИi полностью укладывается в очередной КИj на верхней шкале, тогда принимаем аКИi=КИj; 2) мКИi накладывается на два соседних КИj и КИj+1 в процентном соотношении a% и b% (a+b=100%), тогда величину аКИi вычисляем из соответствующей пропорции представимости аКИi=(КИj/a%+КИj+1/b%)*100%. Полученный временной ряд аКИi и подвергается спектральному анализу.

    Частотные диапазоны. Отдельные области полученного амплитудного спектра (амплитуды измеряются в милисекундах) представляют мощность вариативности КИ, обусловленную влиянием различных регуляторных систем организма. При спектральном анализе выделяют четыре частотных диапазона:

    • · 0,4-0,15 Гц (период колебаний 2,5-6,7 с) - высокочастотный (HF - high frequency) или дыхательный диапазон отражает активность парасимпатического кардиоингибиторного центра продолговатого мозга, реализуется через блуждающий нерв;
    • · 0,15-0,04 Гц (период колебаний 6,7-25 с) - низкочастотный (LF - low frequency) или вегетативный диапазон (медленные волны первого порядка Траубе-Геринга) отражает активность симпатических центров продолговатого мозга, реализуется через влияния СВНС и ПСВНС, но преимущественно - иннервацией от верхнего грудного (звездчатого) симпатического ганглия;
    • · 0,04-0,0033 Гц (период колебаний от 25 с до 5 мин) - сверхнизкочастотный (VLF - very low frequency) сосудисто-двигательный или васкулярный диапазон (медленные волны второго порядка Майера) отражает действие центральных эрготропных и гуморально-метаболических механизмов регуляции; реализуется через изменение в крови гормонов (ретин, ангиотензин, альдостерон и др.);
    • · 0,0033 Гц и медленнее - ультранизкочастотный (ULF) диапазон отражает активность высших центров регуляции сердечного ритма, точное происхождение регуляции неизвестно, диапазон редко исследуется в связи с необходимость выполнения длительных записей.

    а - релаксация; б - глубокое дыхание На рис. 6.27 приведены спектрограммы для двух физиологических проб. В состоянии релаксации (рис. 6.27, а) с поверхностным дыханием амплитудный спектр достаточно монотонно спадает в направлении от низких частот к высоким, что говорит о сбалансированной представимости различных ритмов. При глубоком дыхании (рис. 6.27, б) резко выделяется один дыхательный пик на частоте 0,11 Гц (с периодом дыхания 9 с), его амплитуда (вариабельность) в 10 раз пре-вышает средний уровень на других частотах.

    Показатели. Для характеристики спектральных диапазонов вычисляется ряд показателей:

    • частота fi и период Тi средневзвешенного пика i-го диапазона, положение такого пика определяется центром тяжести (относительно оси частот) участка графика спектра в диапазоне;
    • мощность спектра в диапазонах в процентном отношении к мощности всего спектра VLF%, LF%, HF% (мощность вычисляется как сумма амплитуд спектральных гармоник в диапазоне); границы нормы составляют, соответственно: 28,65±11,24; 33,68±9,04; 35,79±14,74;
    • среднее значение амплитуды спектра в диапазоне Аср или средняя вариативность КИ; границы нормы составляют, соответственно: 23,1±10,03, 14,2±4,96, 6,97±2,23;
    • амплитуда максимальной гармоники в диапазоне Аmax и ее период Tmax (для повышения устойчивости этих оценок необходимо предварительное сглаживание спектра);
    • нормированные мощности: LFnorm=LF/(LF+HF)*100%; HFnorm=HF/(LF+HF) *100%; коэффициент вазосимпатического баланса LF/HF; границы нормы составляют, соответственно: 50,6±9,4; 49,4±9.4; 0,7±1,5.

    Погрешности спектра КИ. Остановимся на некоторых инструментальных погрешностях спектрального анализа (см. в разд. 4.4) применительно к интервалограмме. Во первых, мощности в частотных диапазонах существенно зависят от «реального» разрешения по частоте, которое в свою очередь зависит, по крайней мере, от трех факторов: от длины записи ЭКГ, от величин КИ и от выбранного шага временной перенормировки интервалограммы. Это уже само по себе накладывает ограничения на сравнимость различных спектров. К тому же утечка мощности от высокоамплитудных пиков и боковые пики вследствие амплитудной модуляции ритмики может простираться далеко в соседние диапазоны, внося значительные и неконтролируемые искажения.

    Во вторых, при записи ЭКГ не нормируется главный действующий фактор - дыхательный ритм, который может иметь разную частоту и глубину (частота дыхания регламентируется только в пробах глубокого дыхания и гипервентиляции). А о сравнимости спектров в диапазонах HF и LF можно было бы вести речь только тогда, когда пробы выполняются с фиксированным периодом и амплитудой дыхания. Для учета и контроля дыхательного ритма следовало бы запись ЭКГ дополнять регистрацией грудного и брюшного дыхания.

    И наконец, само разбиение спектра КИ на существующие диапазоны достаточно условно и статистически никак не обосновано. Для такого обоснования следовало бы на большом экспериментальном материале опробовать различные разбиения и выбрать наиболее значимое и устойчивое в плане факторной интерпретации.

    Вызывает также определенное недоумение повсеместное использование именно оценок мощности СА. Такие показатели плохо согласуются друг с другом, поскольку прямо зависят от размеров частотных диапазонов, которые в свою очередь различаются в 2-6 раз. В этом отношении предпочтительнее использование средних амплитуд спектра, которые в свою очередь не плохо коррелируют с рядом показателей ВП в диапазоне значений от 0,4 до 0,7.

    Корреляционая ритмография Этот раздел включает преимущественно построение и визуальное изучения двумерных скаттерграмм или диаграмм рассеяния, представляющих зависимость предшествующих КИ от последующих. Каждая точка на этом графике (рис. 6.28) обозначает соотношение между длительностями предыдущего КИi (по оси Y) и следующего КИi+1 (по оси X).

    Показатели. Для характеристики облака рассеяния вычисляют положение его центра, т. е. среднее значение КИ (М), а также размеры продольной L и поперечной w осей и их отношение w/L. Если в качестве КИ взять чистую синусоиду (идеальный случай влияния только одного ритма), то w будет составлять 2,5% от L. В качестве оценок w и L обычно используют стандартные отклонения a и b по этим осям.

    Для лучшей визуальной сравнимости на скаттерграмме строят эллипс (рис. 6.28) с размером осей 2L, 2w (при небольшом объеме выборки) или 3L, 3w (при большом объеме выборки). Статистическая вероятность выхода за два и три стандартные отклонения составляет 4,56 и 0,26% при нормальном законе распределения КИ.

    Норма и отклонения. При наличии резких нарушений ВСР диаграмма рассеяния приобретает случайный характер (рис. 6.29, а) или же распадается на отдельные фрагменты (рис. 6.29, б): так в случае экстрасистолии появляются симметричные относительно диагонали группы точек, сдвинутые в область коротких КИ от основного облака рассеяния, а в случае асистолии появляются симметричные группы точек в области коротких КИ. В этих случаях скаттерграмма не дает никакой новой информации по сравнению с интервалограммой и гистограммой.

    а - выраженная аритмия; б - экстрасистолия и асистолия Поэтому скаттерграммы полезны преимущественно в условиях нормы для взаимных сравнений различных испытуемых в различных функциональных пробах. Отдельной областью такого применения является тестирование тренированности и функциональной готовности к физи-ческим и психологическим нагрузкам (см. далее).

    Соотношение показателей Для оценки значимости и соотношения различных показателей ВСР в 2006 г. нами было проведено специальное статистическое исследование. Исходными данными являлись 378 записей ЭКГ, выполненных в состоянии релаксации у спортсменов высшей квалификации (футбол, баскетбол, хоккей, шорт-трек, дзюдо) . Результаты корреляционного и факторного анализа позволили сделать следующие выводы:

    1. Набор наиболее употребительных в практике показателей ВСР избыточен, более 41% в нем (15 из 36) составляют функционально связанные и высококоррелированные показатели:

    · функционально зависимыми являются следующие пары показателей: ЧСС-RRNN, Мо-RRNN, LF/HF-HFnorm, LFnorm-HFnorm, fVLF-TVLF, fLF-TLF, fHF-THF, w/L-ИМА, Kr-ИМА, Kr-w/L;

    · высоко коррелированными являются следующие показатели (в качестве множителей указаны коэффициенты корреляции): Мо-0,96*ЧСС, АМо-0,93*ИВР-0,93*ПАПР, ИВР-0,96*ИН, ВПР-0,95*ИН, ПАПР-0,95*ИН-0,91*ВПР, dХ-0,92*SDNN, RMSSD-0,91*рNN50, ИДМ-0,91*HF%, ИДМ-0,91*АсрHF, w=0,91*рNN50, Br=0,91*w/L, Br=0,91*Kr, LF/HF=0,9*VL%.

    В частности, все показатели корреляционной ритмографии в указанном смысле дублируются показателями вариационной пульсометрии, тем самым этот раздел являет лишь удобную форму визуального представления информации (скаттерграмму).

    2. Показатели вариационной пульсометрии и спектрального анализа отражают различные и ортогональные факторные структуры.

    3. Среди показателей вариационной пульсометрии наибольшую факторную значимость имеют две группы показателей: а) САТ, ПСС, ИН, SDNN, pNN50, ИДМ, характеризующие различные аспекты напряженности сердечной деятельности; б) ИМА, ПСА, характеризующие соотношение ритмичности-аритмичности сердечной деятельности;

    4. Значимость диапазонов LF и VLF для функциональной диагностики сомнительна, поскольку факторное соответствие их показателей неоднозначно, а сами спектры подвержены влиянию многочисленных и неконтролируемых искажений.

    5. Вместо неустойчивых и неоднозначных спектральных показателей возможно использование ИДМ и ИМА, отражающих дыхательные и медленноволновые компоненты сердечной вариативности. Вместо оценок мощности в диапазонах предпочтительнее использование средних амплитуд спектра.

    Оценка тренированности Одним из эффективных методов оценки тренированности и функциональной готовности (спортсменов и других профессионалов, работа которых сопряжена с повышенными физическими и психологическими нагрузками) является анализ динамики изменения ЧСС в процессе физической нагрузки большей интенсивности и в период постнагрузочного восстановления. Эта динамика напрямую отражает скоростные и действенные характеристики биохимических обменных процессов, протекающих в жидкостной среде организма. В стационарных условиях физическая нагрузка обычно дается в форме велоэргономометрических испытаний, в условиях же реальных соревнований возможно преимущественно исследование восстановительных процессов.

    Биохимия мышечного энергообеспечения. Энергия, получаемая организмом от расщепления продуктов питания, хранится и транс-портируется к клеткам в виде высокоэнергетического соединения АТФ (адренозинтрифосфорная кислота). Эволюция сформировала три энергообеспечивающие функциональные системы:

    • 1. Анаэробно-алактатная система (АТФ - КФ или креатинфосфат) использует АТФ мышц на начальной фазе работы с последующим восстановлением запасов АТФ в мышцах путем расщепления КФ (1 моль КФ = 1 моль АТФ). Запасы АТФ и КФ обеспечивают только краткие энергетические потребности (3-15 с).
    • 2. Анаэробно-лактатная (гликолитическая) система осуществляет энергообеспечение путем расщепления глюкозы или гликогена, сопровождаемое образованием пировиноградной кислоты с последующим ее преобразованием в молочную кислоту, которая, быстро разлагаясь, образует калиевые и натриевые соли, имеющие общее название лактата. Глюкоза и гликоген (образуется в печени из глюкозы) трансформируются в глюкозо-6-фосфат, а затем - в АТФ (1 моль глюкозы = 2 моля АТФ, 1 моль гликогена = 3 моля АТФ).
    • 3. Аэробно-окислительная система использует кислород для окисления углеводов и жиров для обеспечения длительной мышечной работы с образованием АТФ в митохондриях.

    В состоянии покоя энергия образуется расщеплением практически одинакового количества жиров и углеводов с образованием глюкозы. При кратковременной интенсивной нагрузке АТФ почти исключительно образуется за счет расщепления углеводов (самая «быстрая» энергия). Содержание углеводов в печени и скелетных мышцах обеспечивает образование не более 2000 ккал энергии, позволяющей пробежать около 32 км. Хотя жиров в организме значительно больше, чем углеводов, но жировой обмен (глюконеогенез) с образованием жирных кислот, а затем и АТФ неизмеримо более энергетически медленный.

    Тип мышечных волокон определяет их окислительную способность. Так мышцы, состоящие из БС-волокон, более специфичны к выпол-нению физической нагрузки высокой интенсивности за счет использования энергии гликолитической системы организма. Мышцы же, состоящие из МС-волокон, содержат большее количество митохондрий и окислительных ферментов, что обеспечивает выполнение большего объема физической нагрузки с использованием аэробного обмена. Физическая нагрузка, направленная на развитие выносливости, способствует увеличению митохондрий и окислительных ферментов в МС-волокнах, но особенно - в БС-волокнах. При этом увеличивается нагрузка на систему транспорта кислорода к работающим мышцам.

    Накапливающийся в жидкой среде организма лактат «подкисляет» мышечные волокна и тормозит дальнейшее расщепление гликогена, а также снижает способность мышц связывать кальций, что препятствует их сокращению. В интенсивных видах спорта аккумулирование лактата достигает 18-22 ммоль/кг при норме в 2,5-4 ммоль/кг. Предельными концентрациями лактата особенно отличаются такие виды спорта, как бокс и хоккей, а наблюдение их в клинической практике характерно для прединфарктых состояний.

    Максимум выброса лактата в кровь происходит на 6-ой минуте после интенсивной нагрузки. Соответственно этому достигает максимума и ЧСС. Далее концентрация лактата в крови и ЧСС падает синхронно. Поэтому по динамике ЧСС можно судить о функциональных способностях организма по уменьшению концентрации лактата, а следовательно - и о эффективности энерговосстанавливащеего метаболизма.

    Средства анализа. В нагрузочный и восстановительный период проводят ряд поминутных i=1,2,3. записей ЭКГ. По результатам строят скаттерграммы, которые совмещают на одном графике (рис. 6.30), по которому визуально оценивают динамику изменения показателей КИ. Для каждой i-й скаттерграммы вычисляют числовые показатели М, a, b, b/a. Для оценки и сравнения тренированности в динамике изменения каждого такого показателя Рi вычисляют поинтервальные оценки вида: (Рi-Pmax)/(Po-Pmax), где Po - значение показателя в состоянии релаксации; Pmax- значение показателя в максимуме физической нагрузки.

    Рис. 6.30. Совмещенные скаттерграммы постнагрузочных 1-секундных интервалов восстановления и состояния релаксации

    Литература 5. Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике. Таганрог: Медиком, 1997.

    6. Гнездицкий В.В. Обратная задача ЭЭГ и клиническая электроэнцефалография. Таганрог: Медиком, 2000

    7. Жирмунская Е.А. Клиническая электроэнцефалография. М.: 1991.

    13. Макс Ж. Методика и техника обработки сигналов при техниче-ских измерениях. М.: Мир, 1983.

    17. Отнес Р., Эноксон Л. Прикладной анализ временных рядов. М.: Мир, 1982. Т. 1, 2.

    18. К. Прибрам. Языки мозга. М.: Прогресс, 1975.

    20. Рандалл Р.Б. Частотный анализ. Брюль и Къер, 1989.

    22. Русинов В.С., Гриндель О.М., Болдырева Г.Н., Вакер Е.М. Биопотенциалы головного мозга. Математический анализ. М.: Медицина, 1987.

    23. А.Я. Каплан. Проблема сегментного описания электроэнцефалограммы человека//Физиология человека. 1999. Т.25. №1.

    24. A.Ya. Kaplan, Al.A. Fingelkurts, An.A. Fingelkurts, S.V. Borisov, B.S. Darkhovsky. Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges//Signal processing. Special Issue: Neuronal Coordination in the Brain: A Signal Processing Perspective. 2005. №85.

    25. А.Я. Каплан. Нестационарность ЭЭГ: методологический и экспериментальный анализ//Успехи физиологических наук. 1998. Т.29. №3.

    26. Каплан А.Я., Борисов С.В.. Динамика сегментных характеристик альфа-активности ЭЭГ человека в покое и при когнитивных нагрузках//Журнал ВНД. 2003. №53.

    27.Каплан А.Я., Борисов С.В., Желиговский В.А.. Классификация ЭЭГ подростков по спектральным и сегментным характеристикам в норме и при расстройстве шизофренического спектра//Журнал ВНД. 2005. Т.55. №4.

    28. Борисов С.В., Каплан А.Я., Горбачевская Н.Л., Козлова И.А.. Структурная организация альфа-активности ЭЭГ подростков, страдающих расстройствами шизофренического спектра//Журнал ВНД. 2005. Т.55. №3.

    29. Борисов С.В., Каплан А.Я., Горбачевская Н.Л., Козлова И.А. Анализ структурной синхронности ЭЭГ подростков, страдающих расстройствами шизофренического спектра//Физиология человека. 2005. Т.31. №3.

    38. Кулаичев А.П. Некоторые методические проблемы частотного анализа ЭЭГ//Журнал ВНД. 1997. № 5.

    43. Кулаичев А.П. Методология автоматизации психофизиологических экспериментов/сб. Моделирование и анализ данных. М.: РУСАВИА, 2004.

    44. Кулаичев А.П. Компьютерная электрофизиология. Изд. 3-е. М.: Изд-во МГУ, 2002.

    Вариабельность сердечного ритма

    Вариабельность сердечного ритма (ВСР) (используется также аббревиатура – вариабельность ритма сердца – ВРС) является быстро развивающимся разделом кардиологии, в котором наиболее полно реализуются возможности вычислительных методов. Это направление во многом инициировано пионерскими работами известного отечественного исследователя Р.М. Баевского в области космической медицины, который впервые ввел в практику ряд комплексных показателей, характеризующих функционирование различных регуляторных систем организма. В настоящее время стандартизация в области Вариабельности сердечного ритма осуществляется рабочей группой Европейского кардиологического общества и Северо-американского общества стимуляции и электрофизиологии.

    Вариабельность – это изменчивость различных параметров, в том числе и ритма сердца, в ответ на воздействие каких-либо факторов, внешних или внутренних.

    Построение кардиоинтервалограммы

    Сердце в идеале способно реагировать на малейшие изменения в потребностях многочисленных органов и систем. Вариационный анализ ритма сердца дает возможность количественной и дифференцированной оценки степени напряженности или тонуса симпатического и парасимпатического отделов ВНС, их взаимодействия в различных функциональных состояниях, а также деятельности подсистем, управляющих работой различных органов. Поэтому программа-максимум этого направления состоит в разработки вычислительно-аналитических методов комплексной диагностики организма по динамике сердечного ритма.

    Методы ВСР не предназначены для диагностики клинических патологий, где хорошо работают традиционные средства визуального и измерительного анализа. Преимущество данного метода состоит в возможности обнаружить тончайшие отклонения в сердечной деятельности, поэтому его применение особенно эффективно для оценки общих функциональных возможностей организма, а также ранних отклонений, которые в отсутствие необходимых профилактических процедур постепенно могут развиться в серьезные заболевания. Методика ВСР широко используется и во многих самостоятельных практических приложениях, в частности, в холтеровском мониторинге и при оценке тренированности спортсменов, а также в других профессиях, связанных с повышенными физическими и психологическими нагрузками.

    Исходными материалом для анализа вариабельности сердечного ритма являются непродолжительные одноканальные записи ЭКГ (по стандарту Северо-американского общества стимуляции и электрофизиологии различают кратковременные записи – 5 минут, и длительные – 24 часа), выполняемые в спокойном, расслабленном состоянии или при функциональных пробах. На первом этапе по такой записи вычисляются последовательные кардиоинтервалы (КИ), в качестве реперных (граничных) точек которых используются R-зубцы, как наиболее выраженные и стабильные компоненты ЭКГ. Метод основан на распознавании и измерении временных интервалов между R–зубцами ЭКГ (R-R-интервалы), построении динамических рядов кардиоинтервалов – кардиоинтервалограммы (Рис. 1) и последующего анализа полученных числовых рядов различными математическими методами.

    Рис. 1. Принцип построения кардиоинтервалограммы (ритмограмма отмечена плавной линией на нижнем графике), где t - величина RR-интервала в миллисекундах, а n- номер (число) RR-интервала.

    Методы анализа

    Методы анализа ВСР обычно группируются в следующие четыре основные раздела:

    • кардиоинтервалография;
    • вариационная пульсометрия;
    • спектральный анализ;
    • корреляционая ритмография.

    Принцип метода: анализ ВСР является комплексным методом оценки состояния механизмов регуляции физиологических функций в организме человека, в частности, общей активности регуляторных механизмов, нейрогуморальной регуляции сердца, соотношения между симпатическим и парасимпатическим отделами вегетативной нервной системы.

    Два контура регуляции

    Можно выделить два контура регуляции: центральный и автономный с прямой и обратной связью.

    Рабочими структурами автономного контура регуляции являются: синусовый узел, блуждающие нервы и их ядра в продолговатом мозгу.

    Центральный контур регуляции сердечного ритма – это сложная многоуровневая система нейрогуморальной регуляции физиологических функций:

    1-й уровень обеспечивает взаимодействие организма с внешней средой. К нему относится центральная нервная система, включая корковые механизмы регуляции. Она координирует деятельность всех систем организма в соответствии с воздействием факторов внешней среды.

    2-й уровень осуществляет взаимодействие различных систем организма между собой. Основную роль играют высшие вегетативные центры (гипоталамо-гипофизарная система), обеспечивающие гормонально-вегетативный гомеостаз.

    3-й уровень обеспечивает внутрисистемный гомеостаз в разных системах организма, в частности в кардиореспираторной системе. Здесь ведущую роль играют подкорковые нервные центры, в частности сосудодвигательный центр, оказывающий стимулирующее или угнетающее действие на сердце через волокна симпатических нервов.

    Рис. 2. Механизмы регуляции сердечного ритма (на рисунке ПСНС - парасимпатическая нервная система).

    Анализ ВСР используют для оценки вегетативной регуляции ритма сердца у практически здоровых людей с целью выявления их адаптационных возможностей и у больных с различной патологией сердечно-сосудистой системы и вегетативной нервной системы.

    Математический анализ вариабельности сердечного ритма

    Математический анализ вариабельности сердечного ритма включает применение статистических методов, методов вариационной пульсометрии и спектральный метод.

    1. Статистические методы

    По исходному динамическому ряду R-R интервалов вычисляются следующие статистические характеристики:

    RRNN- математическое ожидание (М) - среднее значение продолжительности R-R интервала, обладает наименьшей изменчивостью среди всех показателей сердечного ритма, так как является одним из наиболее гомеостатируемых параметров организма; характеризует гуморальную регуляцию;

    SDNN (мс) - среднее квадратическое отклонение (СКО), является одним из основных показателей вариабельности СР; характеризует вагусную регуляцию;

    RMSSD (мс) - среднеквадратичное различие между длительностью соседних R-R интервалов, является мерой ВСР с малой продолжительностью циклов;

    РNN50 (%) - доля соседних синусовых интервалов R-R, которые различаются более чем на 50 мс. Является отражением синусовой аритмии, связанной с дыханием;

    CV - коэффициент вариации (КВ), КВ=СКО / М х 100, по физиологическому смыслу не отличается от среднего квадратического отклонения, но является показателем, нормированным по частоте пульса.

    2. Метод вариационной пульсометрии

    Мо - мода - диапазон наиболее часто встречающихся значений кардиоинтервалов. Обычно в качестве моды принимают начальное значение диапазона, в котором отмечается наибольшее число R-R-интервалов. Иногда принимается середина интервала. Мода указывает на наиболее вероятный уровень функционирования системы кровообращения (точнее, синусового узла) и при достаточно стационарных процессах совпадает с математическим ожиданием. В переходных процессах значение М-Мо может быть условной мерой нестационарности, а значение Мо указывает на доминирующий в этом процессе уровень функционирования;

    АМо - амплитуда моды - число кардиоинтервалов, попавших в диапазон моды (в %). Величина амплитуды моды зависит от влияния симпатического отдела вегетативной нервной системы и отражает степень централизации управления сердечным ритмом;

    DX - вариационный размах (ВР), DX=RRMAXx-RRMIN - максимальная амплитуда колебаний значений кардиоинтервалов, определяемая по разности между максимальной и минимальной продолжительностью кардиоцикла. Вариационный размах отражает суммарный эффект регуляции ритма вегетативной нервной системой в значительной мере связанный с состоянием парасимпатического отдела вегетативной нервной системы. Однако, в определенных условиях при значительной амплитуде медленных волн вариационной размах зависит в большей мере от состояния подкорковых нервных центров, чем от тонуса парасимпатической системы;

    ВПР - вегетативный показатель ритма. ВПР = 1 /(Мо х ВР); позволяет судить о вегетативном балансе с точки зрения оценки активности автономного контура регуляции. Чем выше эта активность, т.е. чем меньше величина ВПР, тем в большей мере вегетативный баланс смещен в сторону преобладания парасимпатического отдела;

    ИН - индекс напряжения регуляторных систем [Баевский Р.М., 1974]. ИН = АМо/(2ВР х Mo), отражает степень централизации управления сердечным ритмом. Чем меньше величина ИН, тем больше активность парасимпатического отдела и автономного контура. Чем больше величина ИН, тем выше активность симпатического отдела и степень централизации управления сердечным ритмом.

    У здоровых взрослых людей средние показатели вариационной пульсометрии составляют: Мо - 0.80 ± 0.04 сек.; АМо - 43.0 ± 0.9%; ВР - 0.21 ± 0.01 сек. ИН у хорошо физически развитых лиц колеблется в пределах от 80 до 140 усл.ед.

    3. Спектральный метод анализа ВСР

    В анализе волновой структуры кардиоинтервалограммы и выделяют действие трех регуляторных систем: симпатического и парасимпатического отделов автономной нервной системы, и действие центральной нервной системы, которые влияют на вариабельность сердечного ритма.

    Применение спектрального анализа позволяет количественно оценить различные частотные составляющие колебаний ритма сердца и наглядно графически представить соотношения разных компонентов сердечного ритма, отражающих активность определенных звеньев регуляторного механизма. Выделяют три главных спектральных компонента (см. рис. выше):

    HF (s – волны) - дыхательные волны или быстрые волны (Т=2,5-6,6 сек., v=0,15-0,4 Гц.), отражают процессы дыхания и другие виды парасимпатической активности, на спектрограмме отмечены зеленым цветом;

    LF (m – волны) - медленные волны I порядка (MBI) или средние волны (Т=10-30сек., v=0.04-0.15 Гц) связаны с симпатической активностью (в первую очередь вазомоторного центра), на спектрограмме отмечены красным цветом;

    VLF (l – волны) - медленные волны II порядка (MBII) или медленные волны (Т>30сек., v<0.04Гц) - разного рода медленные гуморально-метаболические влияния, на спектрограмме отмечены синим цветом.

    При спектральном анализе определяют суммарную мощность всех компонентов спектра (ТР), и абсолютную суммарную мощность для каждого из компонентов, при этом ТР определяется как сумма мощностей в диапазонах HF, LF и VLF.

    Все вышеперечисленные параметры отражаются в отчете по кардиотестированию.

    Как проводить математический анализ вариабельности сердечного ритма

    Результаты лучше всего занести в таблицу и сопоставить с нормальными значениями. Затем проводят оценку полученных данных и делают вывод о состоянии вегетативной нервной системы, влиянии автономного и центрального контуров регуляции и адаптационных возможностях испытуемого.

    Таблица «Вариабельность сердечного ритма».

    Исследование проводилось в положении (лежа/сидя).

    Длительность в мин.___________. Общее количество R-Rинтервалов___________. ЧСС:________

    Норма и снижение вариабельности сердечного ритма

    Постановку диагноза, связанного с проблемами в области сердца значительно упрощают новейшие методы исследования сосудистой системы человека. Несмотря на то, что сердце является независимым органом, на него достаточно серьезное влияние оказывает деятельность нервной системы, способная привести к перебоям в его работе.

    Последние исследования выявили взаимосвязь между заболеваниями сердца и нервной системой, провоцирующими частую внезапную смертность.

    Что такое ВСР?

    Нормальный временной интервал между каждым циклом сердечных сокращений всегда разный. У людей со здоровым сердцем он все время меняется даже при стационарном покое. Это явление получило название вариабельность сердечного ритма (сокращенно ВСР).

    Разница между сокращениями находится в пределах определенной средней величины, которая меняется в зависимости от конкретного состояния организма. Поэтому ВСР оценивается только при стационарном положении, так как разнообразие в деятельности организма приводит к изменению ЧСС, каждый раз подстраиваясь под новый уровень.

    Показатели ВСР указывают на физиологию в системах. Анализируя ВСР можно точно оценить функциональные особенности организма, проследить за динамикой работы сердца, выявить резкое понижение сердечных сокращений, приводящих к внезапной смерти.

    Методы определения

    Кардиологическое изучение сердечных сокращений определило оптимальные методы ВСР, их характеристики при различных состояниях.

    Анализ проводится на изучении последовательности интервалов:

    • R-R (электрокардиограмма сокращений);
    • N-N (промежутки между нормальными сокращениями).

    Статистические методы. Эти способы основаны на получении и сравнении «N-N» промежутков с оценкой вариабельности. Полученная после обследования кардиоинтервалограмма показывает совокупность повторяющихся друг за другом «R-R» интервалов.

    Показатели данных промежутков включают:

    • SDNN отражают сумму показателей ВСР при котором выделены отклонения N-N интервалов и вариабельность R-R промежутков;
    • RMSSD сравнение последовательности N-N интервалов;
    • PNN5O показывает процент N-N промежутков, которые различаются большее 50 миллисекунд за весь промежуток исследования;
    • CV оценка показателей величинной вариабельности.

    Геометрические методы выделяют путем получения гистограммы, на которой изображены кардиоинтерваллы с различной продолжительностью.

    Эти методы просчитывают изменчивость сердечных сокращений с помощью определенных величин:

    • Mo (Мода) обозначает кардиоинтервалы;
    • Amo (Амплитуда Моды) – количество кардиоинтервалов, которые пропорциональны Mo в процентном соотношении к выбранному объему;
    • VAR (вариационный размах) соотношение степени между кардиоинтервалами.

    Автокорреляционный анализ оценивает ритм сердца как случайное развитие. Это график динамической корреляции, полученный при постепенном смещении на одну единицу динамического ряда по отношению к ряду собственному.

    Этот качественный анализ позволяет изучить влияние центрального звена на работу сердца и определить скрытость периодичности сердечного ритма.

    Корреляционная ритмография (скаттерография). Суть метода заключена в отображении следуемых друг за другом кардиоинтервалов в графической двухмерной плоскости.

    Во время построения скаттерогаммы выделяется биссектриса, в центре которой находится совокупность точек. Если точки отклонены влево, видно на сколько цикл короче, смещение вправо показывает насколько длиннее предыдущего.

    На полученной ритмограмме выделена область, соответствующая отклонению N-N промежутков. Способ позволяет выявить активную работу вегетативной системы и ее последующее влияние на сердце.

    Способы исследования ВСР

    Международными медицинскими стандартами определено два способа исследования сердечного ритма:

    1. Регистрационная запись «RR» интервалов - на протяжении 5 минут используется для быстрой оценки ВСР и проведения определенных медицинских проб;
    2. Суточная запись «RR» промежутков - точнее оценивает ритмы вегетативной регистрации «RR» промежутков. Однако при расшифровке записи многие показатели оцениваются по пятиминутному промежутку регистрации ВСР, так как на длинной записи образуются отрезки, мешающие сделать спектральный анализ.

    Для определения высокочастотного компонента в сердечном ритме нужна запись продолжительностью около 60 секунд, а для анализа низкочастотного компонента требуется 120 секунд записи. Для правильной оценки компонента низкой частоты необходима пятиминутная запись, которая и выбрана для стандартного исследования ВСР.

    ВСР здорового организма

    Вариабельность серединного ритма у здоровых людей дает возможность определить их физическую выносливость согласно возраста, пола, времени суток.

    У каждого человека показатели ВСР индивидуальны. У женщин наблюдается более активная частота сердечных сокращений. В детском и подростковом возрасте прослеживается наивысшая ВСР. Высоко- и низкочастотные компоненты снижаются с возрастом.

    Влияние на ВСР оказывает вес человека. Пониженная масса тела провоцирует мощность спектра ВСР, у людей с лишним весом наблюдается обратный эффект.

    Спорт и легкие физические нагрузки оказывают благоприятное воздействие на ВСР: мощность спектра возрастает, ЧСС становится реже. Избыточные же нагрузки, напротив, повышают частоту сокращений и снижают ВСР. Этим объясняются частые внезапные смерти среди спортсменов.

    Использование методов определения вариации сердечного ритма позволяет контролировать тренировки, постепенно увеличивая нагрузки.

    Если ВСР снижен

    Резкое снижение вариации сердечного ритма указывает на определенные заболевания:

    · Ишемическая и гипертоническая болезни;

    · Прием некоторых препаратов;

    Исследования ВСР в медицинской деятельности относятся к несложным и доступным методам, оценивающим вегетативную регуляцию у взрослых и детей при ряде заболеваний.

    В лечебной практике анализ позволяет:

    · Провести оценку висцеральной регуляции сердца;

    · Определить общую работу организма;

    · Оценить уровень стрессовой ситуации и физической активности;

    · Контролировать эффективность проведения лекарственной терапии;

    · Диагностировать заболевание на начальной стадии;

    · Помогает подобрать подход к лечению сердечно-сосудистых заболеваний.

    Поэтому при обследовании организма не стоит пренебрегать методами исследований сердечных сокращений. Показатели ВСР помогают определить степень тяжести заболевания и подобрать правильное лечение.

    Related Posts:

    Leave a Reply

    Существует ли риск инсульта?

    1. Повышенное(более 140) артериальное давление:

    • часто
    • иногда
    • редко

    2. Атеросклероз сосудов

    3. Курение и алкоголь:

    • часто
    • иногда
    • редко

    4. Болезни сердца:

    • врожденный порок
    • клапанные нарушения
    • инфаркт

    5. Прохождение диспансеризации и диангостики МРТ:

    • каждый год
    • раз в жизни
    • никогда

    Итого: 0 %

    Инсульт достаточно опасное заболевание, которому подвержены люди далеко не только старческого возраста, но и среднего и даже совсем молодого.

    Инсульт – чрезвычайная опасная ситуация, когда требуется немедленная помощь. Зачастую он заканчивается инвалидностью, во многих случаях даже смертельным исходом. Помимо закупорки кровеносного сосуда при ишемическом типе, причиной приступа может стать и кровоизлияние в мозг на фоне повышенного давления, иначе говоря геморрагический инсульт.

    Ряд факторов увеличивает вероятность наступления инсульта. Не всегда виновны, например, гены или возраст, хотя после 60 лет угроза значительно возрастает. Тем не менее, каждый может что-то предпринять для его предотвращения.

    Повышенное артериальное давление является основным фактором угрозы развития инсульта. Коварная гипертония не проявляется симптомами на начальном этапе. Поэтому больные замечают ее поздно. Важно регулярно измерять кровяное давление и принимать лекарства при повышенных уровнях.

    Никотин сужает кровеносные сосуды и повышает артериальное давление. Опасность инсульта у курильщика вдвое выше, чем у некурящего. Тем не менее, есть и хорошие новости: те, кто бросают курить, заметно снижают эту опасность.

    3. При избыточной массе тела: худейте

    Ожирение - важный фактор развития инфаркта мозга. Тучные люди должны задуматься о программе похудения: есть меньше и качественнее, добавить физической активности. Пожилым людям стоит обсудить с врачом, в какой степени им полезно снижение веса.

    4. Держите уровни холестерина в норме

    Повышенный уровень "плохого" холестерина ЛНП ведет к отложениям в сосудах бляшек и эмбол. Какими должны быть значения? Каждый должен выяснить в индивидуальном порядке с врачом. Поскольку пределы зависят, например, от наличия сопутствующих заболеваний. Кроме того, высокие значения «хорошего» холестерина ЛВП считаются положительными. Здоровый образ жизни, особенно сбалансированное питание и много физических упражнений, может положительно повлиять на уровень холестерина.

    Полезной для сосудов является диета, которая обычно известна как «средиземноморская». То есть: много фруктов и овощей, орехи, оливковое масло вместо масла для жарки, меньше колбасы и мяса и много рыбы. Хорошие новости для гурманов: можно позволить себе один день отступить от правил. Важно в общем правильно питаться.

    6. Умеренное потребление алкоголя

    Чрезмерное употребление алкоголя увеличивает гибель пострадавших от инсульта клеток мозга, что не допустимо. Полностью воздерживаться необязательно. Стакан красного вина в день даже полезен.

    Движение иногда лучшее, что можно сделать для своего здоровья, чтобы сбросить килограммы, нормализовать артериальное давление и поддержать эластичность сосудов. Идеальны для этого упражнения на выносливость, такие как плавание или быстрая ходьба. Продолжительность и интенсивность зависят от личной физической подготовки. Важное замечание: нетренированные старше 35 лет должны быть первоначально осмотрены врачом, прежде чем начать заниматься спортом.

    8. Прислушивайтесь к ритму сердца

    Ряд заболеваний сердца способствует вероятности инсульта. К ним относятся фибрилляция предсердий, врожденные пороки и другие нарушения ритма. Возможные ранние признаки проблем с сердцем нельзя игнорировать ни при каких обстоятельствах.

    9. Контролируйте сахар в крови

    Люди с диабетом в два раза чаще переносят инфаркт мозга, чем остальная часть населения. Причина заключается в том, что повышенные уровни глюкозы могут привести к повреждению кровеносных сосудов и способствуют отложению бляшек. Кроме того, у больных сахарным диабетом часто присутствуют другие факторы риска инсульта, такие как гипертония или слишком высокое наличие липидов в крови. Поэтому больные диабетом должны позаботиться о регулировании уровня сахара.

    Иногда стресс не имеет ничего плохого, может даже мотивировать. Однако, продолжительный стресс может повысить кровяное давление и восприимчивость к болезням. Он косвенно может стать причиной развития инсульта. Панацеи от хронического стресса не существует. Подумайте, что лучше для вашей психики: спорт, интересное хобби или, возможно, упражнения на расслабление.

    КТГ – это особая диагностическая ветвь ультразвукового исследования (УЗИ), с помощью которой на поздних сроках беременности регистрируется частота сердечных сокращений ребенка, а также тонуса матки. Полученные данные синхронизируются и отражаются в виде простых графиков на ленте кардиотокограммы.

    Иногда пациентки при получении непонятного для них результата процедуры, желают самостоятельно подвергнуть его расшифровке, но нередко сталкиваются с некоторыми трудностями. Для того чтобы разобраться с итогами КТГ, необходимо изучить каждый показатель по отдельности. В данной статье речь пойдет о таком важном параметре, как вариабельность, исследование которой внесет ясность в понимание рассматриваемого вопроса.

    Что такое вариабельность?

    Вариабельность – это амплитуда колебаний, представляющих собой какие-либо отклонения от основной линии базального показателя. Выражаясь простым языком, речь идет о разнице между максимальными (восходящими) и минимальными (нисходящими) зубцами.

    Выделяется несколько основных типов показателя амплитуды (сальтаторная, слегка ундилирующая, монотонная и ундилирующая), каждый из которых требует небольшого пояснения.

    Помимо рассматриваемого параметра на кардиотокограмме могут присутствовать дополнительные показатели: STV (или short-temp variation) и LTV (или long-term variation) – кратковременная и долговременная вариабельности. Они расшифровываются только с помощью особых автоматизированных систем.

    Какова норма амплитуды?

    Нормальным показателем вариабельности считается от 5 до 25 ударов в минуту. При этом их частота не должна достигать более 6 единиц. STV располагается в области 6–9 мс (миллисекунд). Более низкий показатель означает наличие так называемого метаболического ацидоза, характеризующегося дисбалансом кислотно-щелочного баланса (pH), при котором значительно повышается кислотность в организме. Хороший уровень LTV соответствует 30–50 миллисекундам.

    При обнаружении серьезных патологических изменений плода в момент проведения КТГ следует незамедлительно обратиться к компетентным врачам за консультацией

    Патологические показатели вариабельности

    Значение вариабельности всегда рассматривается вкупе с остальными показателями кардиотокографии, поскольку лишь цельная картина, собранная из всех осколков мозаики, позволит составить более достоверную и объективную оценку состояния ребенка.

    Так, параметр, располагающийся ниже 5 ударов в минуту, вместе с базальным ритмом в 100–110 или 160–170 единиц образует сомнительный результат ультразвукового исследования. В таком случае назначается дополнительная процедура КТГ, показания которой расставят все на свои места.

    Также должен вызвать подозрение комплекс следующих показателей:

    • отсутствие акцелерации;
    • внезапные вспышки децелерации;
    • отклонение базальной частоты сердечных сокращений от нормы;
    • слишком высокая или низкая вариабельность.

    При обнаружении подобных настораживающих признаков через несколько часов проводиться дополнительное обследование по иным методикам.

    Полное отсутствие вариабельности может свидетельствовать о гипоксии плода (недостаточности кислорода), серьезном поражении центрально-нервной или сердечно-сосудистой системы. Более подробный анализ расшифровки КТГ содержится в этой статье .

    Для того чтобы определить точный результат ультразвуковой процедуры, необходимо доверить расшифровку данных специалисту, который в силу необходимого медицинского опыта сделает верное заключение на основе полученных показателей.

    В приложении Welltory, позволяющем измерять стресс и энергию всего лишь при помощи камеры смартфона, теперь доступна подробная расшифровка вашего замера вариабельности сердечного ритма.

    Почему это интересно и уникально?

    Сервис Welltory помогает корректировать образ жизни и быть продуктивным, потому что при помощи этого приложения мы можем измерять уровни энергии и стресса каждый день, подключить к нему данные еще из 100+ источников и на основе этого видеть закономерности, что нам можно улучшить в собственной жизни и как контролировать самочувствие. Стресс и энергия рассчитываются на основании замера вариабельности сердечного ритма. Это не пульс, хотя данные по пульсу вы тоже видите в приложении. Это замер временных промежутков между ударами сердца. Обычно эти промежутки не одинаковые, они отличаются. Чем выше вариабельность сердечного ритма, тем лучше ваш организм себя чувствует и выдерживает стресс-факторы, которым мы все подвержены ежедневно. Вариабельность показывает работу вегетативной нервной системы, и этот метод диагностики успешно применяется в медицине и профессиональном спорте.

    Вот что такое вариабельность сердечного ритма (в англ. — Heart Rate Variablity, HRV):


    В таком замере обычно очень много параметров, это не просто расстояния между ударами, как можно подумать. Человек без специальной подготовки не сможет понять, что это значит и какие выводы он может сделать о состоянии своего организма.

    Пример, какое количество данных может содержать замер вариабельности:

    На данный момент есть устройства, которые позволяют измерять вариабельность сердечного ритма, например, Polar или Zephyr. Есть сервисы, которые предоставляют подробные данные о замере вариабельности, например, EliteHRV и Firstbeat.

    Но внутри Welltory вы сейчас получите не только подобную расшифровку вариабельности сердечного ритма, но и трактовку, что это все значит для вас лично и для вашего организма. Мы взяли все показатели вариабельности, которые наука использует для анализа состояния человека, полученные методом и спектрального, и временного анализа, и вывели для них понятные трактовки. Чтобы осуществить это на практике, команда Welltory изучила множество научных исследований, где рассказано о корреляциях между вариабельностью сердечного ритма и тем, как работают разные системы человеческого организма.

    Сейчас мы можем сказать, что Welltory предоставляет пользователю максимально расширенную из возможных интерпретаций по одному замеру вариабельности.

    Ранее, сделав замер, вы получали только интегральные показатели стресса и энергии, что позволяло понять, как ваш организм в целом реагирует на стресс-факторы и как восстанавливается, а сейчас у вас будет более серьезная и подробная картина о его состояниии * (см. дисклеймер внизу).

    Так для чего это нужно и что это показывает?

    В полной расшифровке вы сможете увидеть все свои основные показатели замера вариабельности и при этом узнать, что они означают для вас и для вашего самочувствия.

    Как происходит замер – вы можете посмотреть на видео:

    Чтобы получить детальную расшифровку замера в Андроид-версии, нужно, сделав замер, на итоговом экране пойти в меню «Еще», сначала выбрать опцию «Указать давление», потом выбрать «Детальная расшифровка» — и вы получите результаты.

    Чтобы получить детальную расшифровку в iOS-версии, нужно, сделав замер, пойти в историю замеров, выбрать из них тот, который вас интересует, например последний, и нажать на кнопку внизу «Детальная расшифровка».


    Итогом этих действий будет расчет и полная трактовка, что происходит с вашим организмом. Вы увидите такие блоки, рассказывающие о состоянии:

    1) Что с вашим сердцем?

    Здесь вы узнаете, как работает ваше сердце сегодня, есть ли признаки тахикардии, не стоит ли задуматься обратиться к врачу.

    Пример ответа: Общая вариабельность вашего сердечного ритма в норме. Сердце хорошо справляется с нагрузками, организм умеет адаптироваться к внешним стресс факторам.

    2) В каком состояние нервная система?

    Вы получите заключение о том, насколько вы утомлены или способны к восстановлению. Пример трактовки: Восстановительный потенциал снижен. Нервная система утомлена и не может нормально регенерироваться. Есть риск ухудшения самочувствия.

    3) Достаточно ли вы спали и хорошо ли восстановились?

    Здесь будут учитываться параметры вариабельности сердечного ритма относительно часов сна, которые есть в системе.

    4) На что вы сегодня способны?

    В этом блоке вы узнаете ваш общий показатель Total Power, уровень ментального стресса и т.д.

    5) Общая оценка состояния (на основе артериального давления).

    Пример общей оценки: Такие показатели встречаются у спортсменов высокого класса, у очень здоровых людей или у людей с увеличенным тонусом парасимпатической нервной системы. В редких случаях может быть следствием патологий или сильной усталости.

    Как видите, картина, которая предлагается, ориентирована на людей, которые хотят быть продуктивными. Относительно этой базовой способности и повышения эффективности развернуты и рекомендации Welltory.

    Везде вы получаете не просто трактовки, но увидите и числовые значения своих параметров, и как они могут соотноситься с нормой.

    Детальная расшифровка замера доступна в бесплатной версии приложения. На ее точность и подробность повлияет, будут ли данные по артериальному давлению, добавленные к замеру в течение часа. Во-вторых, замер будет более точным, если сделан при помощи кардиомонитора, потому что камера делает замер по 100 ударам сердца, а кардиомонитор — по 300 ударам. На платных тарифах Welltory расшифровки будут более подробными, потому что в этом случае можно добавить еще и данные по сну.

    Почему это важно для рынка mHealth?

    На текущий момент Welltory собрала самую большую базу в мире замеров вариабельности сердечного ритма – более 300 тысяч замеров. Это интереснейшее поле для анализа данных и для поиска корреляций между образом жизни и состоянием здоровья и продуктивности.

    Но сейчас сделан новый шаг, потому что в массовом приложении доступна на данный момент самая подробная расшифровка замера вариабельности, которая может быть сделана пользователем бесплатно и всего лишь при помощи камеры смартфона.

    На рынке есть довольно много решений по замерам вариабельности сердечного ритма и по предложению пользователям их с деталями, но без трактовки показателей с объяснениями, что это значит для организма. Например, EliteHRV:

    Также, существуют услуги кастомизированных отчетов, например, от Firstbeat – Firstbeat Lifestyle Assessment (https://www.firstbeat.com/en/wellness-services/individual-wellbeing/), которые стоят довольно дорого, но менее подробны, чем расшифровка Welltory. Имея в виду, что это не индивидуальная, а автоматизированная бесплатная услуга – это действительно новый и большой шаг, который позволяет сделать метод диагностики при помощи вариабельности (HRV) доступным и популяризирует его.

    «Мы первые на рынке, кто попытался объяснить вариабельность сердечного ритма человеческим языком,» — говорит со-основатель компании и директор по R&D Евгения Смородникова. Метод анализа самочувствия на основе вариабельности еще уникален тем, что он является неинвазивным: для того, чтобы узнать что-то о своём самочувствии, не нужно делать анализы и посылать биоматериалы, плюс довольно точные замеры доступны при помощи недорогих гаджетов или телефона. Это метод, прямо созданный для цифровых решений, и его можно использовать для массы полезных сервисов.

    Так что благодаря новым возможностям, мы можем получить более полное представление о том, что с нами происходит и какие шаги мы можем предпринять уже сейчас для увеличения своей продуктивности и энергии.

    Дисклеймер:
    Р асшифровки в приложении и вся предоставленная информация не являются медицинским диагнозом и не может быть использована как призыв к самолечению, изменению врачебных рекомендаций или выступать в качестве замены для очной консультации специалиста.

    Приложение

    В таблице ниже — все снимаемые Welltory параметры ВСР на случай, если пользователю захочется самостоятельно проанализировать показатели или предоставить своему специалисту (врачу) данные замера.

    Название Значение в текущем замере

    Базовые витальные показатели

    Пульс, уд/мин heart rate
    Систолическое давление, мм.рт.с. systolic
    Диастолическое давление, мм.рт.с. diastolic

    Показатели временных методов анализа ВСР

    Mean RR, мс meanrr
    MxDMn, с MxDMn
    SDNN, мс STDRR
    rMSSD, мc rMSSD
    pNN50, % pnn50
    Moda, мс Mode
    AMo, % AMo

    Показатели спектральных методов анализа ВСР

    HF, мс^2 hf
    HF, % Расчет: доля hf от общей суммы переменных hf+lf+vlf из БД в %
    LF, мс^2 lf
    LF, % Расчет: доля lf от общей суммы переменных hf+lf+vlf из БД в %
    VLF, мс^2 vlf
    VLF, % Расчет: доля vlf от общей суммы переменных hf+lf+vlf из БД в %
    Total Power, мс^2 Расчет: hf+lf+vlf
    LF/HF Расчет: lf поделить на hf

    28.07.2016

    Постановку диагноза, связанного с проблемами в области сердца значительно упрощают новейшие методы исследования сосудистой системы человека. Несмотря на то, что сердце является независимым органом, на него достаточно серьезное влияние оказывает деятельность нервной системы, способная привести к перебоям в его работе.

    Последние исследования выявили взаимосвязь между заболеваниями сердца и нервной системой, провоцирующими частую внезапную смертность.

    Что такое ВСР?

    Нормальный временной интервал между каждым циклом сердечных сокращений всегда разный. У людей со здоровым сердцем он все время меняется даже при стационарном покое. Это явление получило название вариабельность сердечного ритма (сокращенно ВСР).

    Разница между сокращениями находится в пределах определенной средней величины, которая меняется в зависимости от конкретного состояния организма. Поэтому ВСР оценивается только при стационарном положении, так как разнообразие в деятельности организма приводит к изменению ЧСС, каждый раз подстраиваясь под новый уровень.

    Показатели ВСР указывают на физиологию в системах. Анализируя ВСР можно точно оценить функциональные особенности организма, проследить за динамикой работы сердца, выявить резкое понижение сердечных сокращений, приводящих к внезапной смерти.

    Методы определения

    Кардиологическое изучение сердечных сокращений определило оптимальные методы ВСР, их характеристики при различных состояниях.

    Анализ проводится на изучении последовательности интервалов:

    • R-R (электрокардиограмма сокращений);
    • N-N (промежутки между нормальными сокращениями).

    Статистические методы . Эти способы основаны на получении и сравнении «N-N» промежутков с оценкой вариабельности. Полученная после обследования кардиоинтервалограмма показывает совокупность повторяющихся друг за другом «R-R» интервалов.

    Показатели данных промежутков включают:

    • SDNN отражают сумму показателей ВСР при котором выделены отклонения N-N интервалов и вариабельность R-R промежутков;
    • RMSSD сравнение последовательности N-N интервалов;
    • PNN5O показывает процент N-N промежутков, которые различаются большее 50 миллисекунд за весь промежуток исследования;
    • CV оценка показателей величинной вариабельности.

    Геометрические методы выделяют путем получения гистограммы, на которой изображены кардиоинтерваллы с различной продолжительностью.

    Эти методы просчитывают изменчивость сердечных сокращений с помощью определенных величин:

    • Mo (Мода) обозначает кардиоинтервалы;
    • Amo (Амплитуда Моды) – количество кардиоинтервалов, которые пропорциональны Mo в процентном соотношении к выбранному объему;
    • VAR (вариационный размах) соотношение степени между кардиоинтервалами.

    Автокорреляционный анализ оценивает ритм сердца как случайное развитие. Это график динамической корреляции, полученный при постепенном смещении на одну единицу динамического ряда по отношению к ряду собственному.

    Этот качественный анализ позволяет изучить влияние центрального звена на работу сердца и определить скрытость периодичности сердечного ритма.

    Корреляционная ритмография (скаттерография). Суть метода заключена в отображении следуемых друг за другом кардиоинтервалов в графической двухмерной плоскости.

    Во время построения скаттерогаммы выделяется биссектриса, в центре которой находится совокупность точек. Если точки отклонены влево, видно на сколько цикл короче, смещение вправо показывает насколько длиннее предыдущего.

    На полученной ритмограмме выделена область, соответствующая отклонению N-N промежутков. Способ позволяет выявить активную работу вегетативной системы и ее последующее влияние на сердце.

    Способы исследования ВСР

    Международными медицинскими стандартами определено два способа исследования сердечного ритма:

    1. Регистрационная запись «RR» интервалов — на протяжении 5 минут используется для быстрой оценки ВСР и проведения определенных медицинских проб;
    2. Суточная запись «RR» промежутков — точнее оценивает ритмы вегетативной регистрации «RR» промежутков. Однако при расшифровке записи многие показатели оцениваются по пятиминутному промежутку регистрации ВСР, так как на длинной записи образуются отрезки, мешающие сделать спектральный анализ.

    Для определения высокочастотного компонента в сердечном ритме нужна запись продолжительностью около 60 секунд, а для анализа низкочастотного компонента требуется 120 секунд записи. Для правильной оценки компонента низкой частоты необходима пятиминутная запись, которая и выбрана для стандартного исследования ВСР.

    ВСР здорового организма

    Вариабельность серединного ритма у здоровых людей дает возможность определить их физическую выносливость согласно возраста, пола, времени суток.

    У каждого человека показатели ВСР индивидуальны. У женщин наблюдается более активная частота сердечных сокращений. В детском и подростковом возрасте прослеживается наивысшая ВСР. Высоко- и низкочастотные компоненты снижаются с возрастом.

    Влияние на ВСР оказывает вес человека. Пониженная масса тела провоцирует мощность спектра ВСР, у людей с лишним весом наблюдается обратный эффект.

    Спорт и легкие физические нагрузки оказывают благоприятное воздействие на ВСР: мощность спектра возрастает, ЧСС становится реже. Избыточные же нагрузки, напротив, повышают частоту сокращений и снижают ВСР. Этим объясняются частые внезапные смерти среди спортсменов.

    Использование методов определения вариации сердечного ритма позволяет контролировать тренировки, постепенно увеличивая нагрузки.

    Если ВСР снижен

    Резкое снижение вариации сердечного ритма указывает на определенные заболевания:
    · Ишемическая и гипертоническая болезни;
    . Инфаркт миокарда;
    · Рассеянный склероз;
    · Сахарный диабет;
    · Болезнь Паркинсона;
    · Прием некоторых препаратов;
    · Нервные нарушения.

    Исследования ВСР в медицинской деятельности относятся к несложным и доступным методам, оценивающим вегетативную регуляцию у взрослых и детей при ряде заболеваний.

    В лечебной практике анализ позволяет:
    · Провести оценку висцеральной регуляции сердца;
    · Определить общую работу организма;
    · Оценить уровень стрессовой ситуации и физической активности;
    · Контролировать эффективность проведения лекарственной терапии;
    · Диагностировать заболевание на начальной стадии;
    · Помогает подобрать подход к лечению сердечно-сосудистых заболеваний.

    Поэтому при обследовании организма не стоит пренебрегать методами исследований сердечных сокращений. Показатели ВСР помогают определить степень тяжести заболевания и подобрать правильное лечение.

    Норма и снижение вариабельности сердечного ритма обновлено: Июль 30, 2016 автором: vitenega