• Значение генетики для современного человечества. Значение генетики в медицине

    Лекция: Значение генетики для медицины

    Генетика человека и медицина

    Генетика человека – это один из подразделов генетики, в рамках которого проводятся исследования закономерностей и механизмов изменчивости и наследования у человека.

    Эта наука находится в тесной связи с антропологией и медициной. Ее подразделяют на:

      антропогенетику – это наука, исследующая наследственность и изменчивость признаков, находящиеся в пределах нормы;

      медицинскую генетику, занимающуюся изучением патологических изменений генома и предупреждением их появления.

    Клиническая (медицинская) генетика, в частности, занимается изучением:

      особенностей проявления патологических и нормальных признаков;

      вероятности возникновения хронических заболеваний вследствие генетической предрасположенности и влияния внешней среды.

    Ее основными задачами являются лечение заболеваний наследственного характера, их изучение, профилактика, выявление, а также определение путей предотвращения воздействия мутагенных факторов на геном человека.

    Статистика показывает, что в человеческих популяциях частота заболеваний генетической природы составляет 2-4%. К ним относятся различные нарушения обмена веществ, также мутации обуславливают некорректное развитие и нарушения функций различных органов и их систем. Например, измененные гены становятся причиной наследственной глухоты, шестипалости, атрофии зрительного нерва и прочих.

    При дефекте гена, в котором закодирована структура фермента, способного превращать фенилаланин в тирозин – возникает болезнь фенилкетонурия. При этом, накапливающийся в организме фенилаланин превращается в разнообразные токсины, оказывающие негативное влияние на нервную систему ребенка. Возникают судорожные припадки, нарушения рефлексов, ослабление умственного развития. Частота ее – 1:8000.

    Известны хромосомные заболевания, такие как синдром Дауна, полисомия по Х-хромосоме у женщин и прочие, которые возникают в результате нарушения расхождения хромосом при образовании гамет. Диагностируется у 1 из 700 младенцев.
    Многие хромосомные нарушения столь тяжелы, что дети если и рождаются, то имеют многочисленные пороки развития и погибают в раннем возрасте.

    Мутагенные факторы генных нарушений


    Причиной возникновения генных нарушений являются мутагенные факторы, которые подразделяются на физические, химические и биологические.

    Физические. К ним относятся различные виды излучения – солнечный ультрафиолет, радиоактивное, другие коротковолновые его формы, а также экстремально высокая или сильно пониженная температура.

    Химические . Это наиболее частая причина возникновения геномных нарушений. Ими могут оказаться:

      нитраты и другие, использующиеся в качестве удобрений;

      химически активные формы кислорода – пероксид в том числе;

      сельскохозяйственные яды;

      некоторые из пищевых добавок (цикламаты и др.);

      нефтепродукты;

      лекарственные средства.

    А также многие виды бесконтрольно применяемых в косметике и быту химических средств.

    Биологические . Это различные биологические вещества, попадающие или синтезирующиеся в организме:

      некоторые вирусы и их токсины (вирусы гриппа, краснухи, кори);

      окисленные липиды и другие продукты метаболизма, не выведенные из организма;

      антигены различных микроорганизмов.

    Химически активные вещества-мутагены могут образовывать с ДНК комплексные соединения. Такая, «обвешанная» посторонними молекулами ДНК мало того, что не может принимать участие в транскрипции и репликации, она изменяется, реагируя с агрессивными веществами, теряет куски своей структуры, что приводит к серьезным нарушениям генетического аппарата.

    В настоящее время ведутся активные исследования в области генетической медицины. Даже по сравнению с 20-летней давностью, разработаны и введены в практику различные методы диагностики генетических нарушений плода на ранних стадиях беременности, проводятся различные комплексные анализы. Ведутся работы по секвенированию (расшифровке) человеческого генома.

    Результаты исследований позволяют разрабатывать новые нормы для различных отраслей промышленности и сельского хозяйства, ограничивающие использование химических соединений, которые могут вызывать мутационные изменения.

    Проводится постоянный мониторинг окружающей среды по различным параметрам.




    Предмет и задачи генетики человека. Генетика человека, или медицинская генетика, изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных (физических, творческих, интеллектуальных способностей) и патологических признаков, зависимость заболеваний от генетической предопределенности и условий окружающей среды, в том числе от социальных условий жизни. Формирование медицинской генетики началось в 30-е гг. XX в., когда стали появляться факты, подтверждающие, что наследование признаков у человека подчиняется тем же закономерностям, что и у других живых организмов.

    Задачей медицинской генетики является выявление, изучение, профилактика и лечение наследственных болезней, а также разработка путей предотвращения вредного воздействия факторов среды на наследственность человека.

    Методы изучения наследственности человека. При изучении наследственности и изменчивости человека используют следующие методы: генеалогический, близнецовый, цитогенетическии, биохимический, дерматоглифический, гибридизации соматических клеток, моделирования и др.

    Генеалогический метод позволяет выяснить родственные связи и проследить наследование нормальных или патологических признаков среди близких и дальних родственников в данной семье на основе составления родословной - генеалогии. Если есть родословные, то, используя суммарные данные по нескольким семьям, можно определить тип наследования признака - доминантный или рецессивный, сцепленный с полом или ауто-сомный, атакже его моногенность или полигенность. Генеалогическим методом доказано наследование многих заболеваний, например сахарного диабета, шизофрении, гемофилии и др.

    Генеалогический метод используется для диагностики наследственных болезней и медико-генетического консультирования; он позволяет осуществлять генетическую профилактику (предупреждение рождения больного ребенка) и раннюю профилактику наследственных болезней.

    Близнецовый метод состоит в изучении развития признаков у близнецов. Он позволяет определять роль генотипа в наследовании сложных признаков, а также оценивать влияние таких факторов, как воспитание, обучение и др.

    Известно, что у человека близнецы бывают однояйцевыми (монозиготными) и разнояйцевыми (дизиготными). Однояйцевые, или идентичные, близнецы развиваются из одной яйцеклетки, оплодотворенной одним сперматозоидом. Они всегда одного пола и поразительно похожи друг на друга, так как имеют один и тот же генотип. Кроме того, у них одинаковая группа крови, одинаковые отпечатки пальцев и почерк, их путают даже родители и не различают по запаху собаки. Только у идентичных близнецов на 100% удаются пересадки органов, поскольку у них одинаков набор белков и пересаженные ткани не отторгаются. Доля однояйцевых близнецов у человека составляет около 35-38% от общего их числа.

    Разнояйцевые, или дизиготные, близнецы развиваются из двух разных яйцеклеток, одновременно оплодотворенных различными сперматозоидами. Дизиготные близнецы могут быть как одного, так и разного пола, а с генетической точки зрения они сходны не больше, чем обычные братья и сестры.

    Изучение однояйцевых близнецов в течение всей их жизни, в особенности если они живут в разных социально-экономических и природно-климатических условиях, интересно тем, что отличия между ними в развитии физических и психических свойств объясняются не разными генотипами, а влиянием условий среды.

    Цитогенетичесий метод основан на микроскопическом исследовании структуры хромосом у здоровых и больных людей. Цитогенетический контроль применяют при диагностике ряда наследственных заболеваний, связанных с явлениями анеуплоидии и различными хромосомными перестройками. Он позволяет также изучать старение тканей на основе исследований возрастной динамики структуры клеток, устанавливать мутагенное действие факторов внешней среды на человека и т. д.

    В последние годы цитогенетический метод приобрел большое значение в связи с возможностями генетического анализа человека, которые открыла гибридизация соматических клеток в культуре. Получение межвидовых гибридов клеток (например, человека и мыши) позволяет в значительной степени приблизиться к решению проблем, связанных с невозможностью направленных скрещиваний, локализовать ген в определенной хромосоме, установить группу сцепления для ряда признаков и т. д. Объединение генеалогического метода с цитогенетическим, а также с новейшими методами генной инженерии значительно ускорило процесс картирования генов у человека.

    Биохимические методы изучения наследственности человека помогают обнаружить ряд заболеваний обмена веществ (углеводного, аминокислотного, липидного и др.) при помощи, например, исследования биологических жидкостей (крови, мочи, амниотической жидкости) путем качественного или количественного анализа. Причиной этих болезней является изменение активности определенных ферментов.

    С помощью биохимических методов открыто около 500 молекулярных болезней, являющихся следствием проявления мутантных генов. При различных типах заболеваний удается либо определить сам аномальный белок-фермент, либо установить промежуточные продукты обмена. По результатам биохимических анализов возможно поставить диагноз болезни и определить методы лечения. Ранняя диагностика и применение различных диет на первых этапах постэмбрионального развития позволяют излечить некоторые заболевания или хотя бы облегчить состояние больных с неполноценными ферментными системами.

    Как и любая другая дисциплина, современная генетика человека использует методы смежных наук: физиологии, молекулярной биологии, генной инженерии, биологического и математического моделирования и т. д. Значительное место в решении проблем медицинской генетики занимает онтогенетический метод, который позволяет рассматривать развитие нормальных и патологических признаков в ходе индивидуального развития организма.

    Наследственные болезни человека, их лечение и профилактика. К настоящему времени зарегистрировано более 2 тыс. наследственных болезней человека, причем большинство из них связано с психическими расстройствами. По данным Всемирной организации здравоохранения, благодаря применению новых методов диагностики ежегодно регистрируется в среднем три новых наследственных заболевания, которые встречаются в практике врача любой специальности: терапевта, хирурга, невропатолога, акушера-гинеколога, педиатра, эндокринолога и т. д. Болезней, не имеющих абсолютно никакого отношения к наследственности, практически не существует. Течение разных заболеваний (вирусных, бактериальных, микозов и даже травм) и выздоровление после них в той или иной мере зависят от наследственных иммунологических, физиологических, поведенческих и психических особенностей индивидуума.

    Условно наследственные болезни можно подразделить на три большие группы: болезни обмена веществ, молекулярные болезни, которые обычно вызываются генными мутациями, и хромосомные болезни.

    Генные мутации и нарушения обмена веществ. Генные мутации могут выражаться в повышении или понижении активности некоторых ферментов, вплоть до их отсутствия. Фенотипи-чески такие мутации проявляются как наследственные болезни обмена веществ, которые определяются по отсутствию или избытку продукта соответствующей биохимической реакции.

    Генные мутации классифицируют по их фенотипическому проявлению, т. е. как болезни, связанные с нарушением аминокислотного, углеводного, липидного, минерального обмена, обмена нуклеиновых кислот.

    Примером нарушения аминокислотного метаболизма является альбинизм - относительно безобидная болезнь, встречающаяся в странах Западной Европы с частотой 1:25000. Причиной заболевания является дефект фермента тирозиназы, в результате чего блокируется превращение тирозина в меланин. У альбиносов молочный цвет кожи, очень светлые волосы и отсутствует пигмент в радужной оболочке глаз. Они имеют повышенную чувствительность к солнечному свету, вызывающему у них воспалительные заболевания кожи.

    Одним из наиболее распространенных заболеваний углеводного обмена является сахарный диабет. Эта болезнь связана с дефицитом гормона инсулина, что приводит к нарушению процесса образования гликогена и повышению уровня глюкозы в крови.

    Ряд патологических признаков (гипертония, атеросклероз, подагра и др.) определяются не одним, а несколькими генами (явление полимерии). Это болезни с наследственным предрасположением, которые в большей степени зависят от условий среды: в благоприятных условиях такие заболевания могут и не проявиться.

    Хромосомные болезни. Этот тип наследственных заболеваний связан с изменением числа или структуры хромосом. Частота хромосомных аномалий у новорожденных составляет от 0,6 до 1%, а на стадии 8-12 недель их имеют около 3% эмбрионов. Среди самопроизвольных выкидышей частота хромосомных аномалий равна примерно 30%, а на ранних сроках (до двух месяцев) - 50% и выше.

    У человека описаны все типы хромосомных и геномных мутаций, включая анеуплоидию, которая может быть двух типов - моносомия и полисомия. Особой тяжестью отличается моносомия.

    Моносомия всего организма описана для Х-хромосомы. Это синдром Шерешевского-Тернера (44+Х), проявляющийся у женщин, для которых характерны патологические изменения телосложения (малый рост, короткая шея), нарушения в развитии половой системы (отсутствие большинства женских вторичных половых признаков), умственная ограниченность. Частота встречаемости этой аномалии 1:4000-5000.

    Разделы: Биология

    Класс: 9

    «Воплощение в жизнь научной истины о законах наследственности
    поможет избавить человечество от многих скорбей и горя».

    (И.П.Павлов)

    Задачи урока:

    Предметные:

    • формировать понятия о генетике человека, науке изучающей особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека, являющейся теоретической основой современной медицины и современного здравоохранения.
    • познакомить с основными методами генетики человека: цитогенетическим, близнецовым, популяционным, биохимическим, генеалогическим.

    Развивающие:

    • развивать мышление, умения сравнивать и анализировать, применять полученную информацию в практике.
    • развивать потребности в творческой самореализации, самообразовании; организации рабочего времени на уроке;

    Личностно-ориентированные (воспитательные, социализирующие):

    • формировать научное мировоззрение,
    • продолжить формирование умений работать в малой группе, слушать товарищей, оценивать себя и других.

    Планируемые результаты: учащиеся должны уметь охарактеризовать суть основных методов генетики человека, усвоить их роль в изучении наследственности человека.

    Тип урока: изучение нового материала.

    Методы обучения: проблемный, частично-поисковый.

    Формы организации учебной деятельности: индивидуальная, в парах, фронтальная.

    Оборудование: учебник С.Г.Мамонтов, В.Б. Захаров, Н.И. Сонин «Биология. Общие закономерности», схемы, тетради, иллюстрации.

    Организационный момент. Добрый день! Сегодняшний урок наполнен большим объемом информации. Настроимся на результативную работу. Внимательно следим за информационными сообщениями своих одноклассников.

    1. Проверка знаний: Фронтальная проверка терминов, знание которых необходимо для успешного усвоения темы: цитология, кариотип, популяция, зигота, аутосома, сцепленный с полом, ген, ДНК, гомозиготный, гетерозиготный, мутации.

    2. Изучение нового материала

    Актуализация знаний, вступительное слово учителя:

    «Карло вошёл в каморку, сел на единственный стул у бедного стола и, повертев так и эдак полено, начал ножом вырезать из него куклу… Первым делом он вырезал на полене волосы, потом лоб, потом глаза…». Ещё несколько взмахов ножом – и деревянный мальчишка закачался на тоненьких ножках. Сказочно просто! В жизни всё гораздо сложнее и дольше.

    Человек – сложнейшая загадка для науки и самого себя, понимание его природы было и остается предметов многочисленных исследований, в том числе и генетических.

    Запишем в тетрадь: Генетика человека – раздел науки генетики, который объясняет многое из того, что ранее было загадочным в биологической природе человека.

    В настоящее время ясно, что наследственность человека подчиняется тем же самым биологическим закономерностям, что и наследственность всех живых существ. Законы наследственности и характер наследования отдельных признаков у человека и животных едины. Изучение наследственности имеет большое значение, так как здоровая наследственность – залог здоровья человека.

    На Руси при выборе невесты родители принимали во внимание не только внешность нрав. Но еще присматривались и к родне невесты до пятого колена: смотрели, нет ли пьяниц, буянов, сумасшедших. Даже пословица была: "Выбирай корову по рогам, а невесту по родам". Старались породниться с семьей, равной по достатку. Что лежало в основе такого серьезного подхода в выборе спутницы жизни?

    Однако в силу целого ряда особенностей исследование наследственности человека затруднено. Как вы думаете, почему? Учащиеся высказывают собственные суждения. После этого учитель выделяет эти особенности, а учащиеся записывают это в тетрадь:

    Перечислим эти особенности:

    – невозможность целенаправленного скрещивания именно тех пар, которые нужно для исследования;
    – позднее половое созревание;
    – малое потомство;
    – невозможность экспериментов с искусственными мутациями; невозможность содержания всех исследуемых людей в одинаковых условиях; относительно большое число хромосом (23 пары).

    Тем не менее, изучение генетики человека, необходимо хотя бы потому, что это нужно медицине. Заболевания, в основе которых лежат генетические нарушения, распространены гораздо шире, чем, кажется на первый взгляд. Из-за этих нарушений около 15% эмбрионов погибает еще до рождения, 3% детей – при рождении, 3% детей умирают, не достигнув половозрелого возраста, 20% людей не вступают в брак и 10% браков – бездетны. Известно более 2000 болезней человека, вызываемых генетическими отклонениями.

    Результаты генетических исследований имеют большое практическое значение для медицины и здравоохранения. В настоящее время разработаны различные методы изучения наследственности человека, о которых мы сегодня и узнаем.

    По ходу выступления групп заполняется таблица:

    Методы изучения наследственности человека

    Метод изучения Изучаемый уровень организации Что изучает Значение

    Выступление 1 группы: ГЕНЕОЛОГИЧЕСКИЙ МЕТОД

    Генеалогия – это учение о родословных. Генеалогический метод состоит в изучении родословных на основе менделеевских законов наследования и помогает установить характер наследования признаков (доминантных или рецессивных). Суть генеалогического метода сводится к выявлению родословных связей и прослеживанию признака или болезни среди близких и дальних прямых и непрямых родственников.
    Так устанавливают наследование индивидуальных особенностей человека: черты лица, роста, группы крови, умственного и психологического склада, а также некоторых заболеваний.
    Часто этот метод называется клинико-генеалогический метод, так как наблюдение идёт за патологическими признаками.(По доминантному типу наследуется так называемая «габсбургская губа», интересным является наследование гемофилии.)

    Присмотревшись к портрету члена семьи XIV века и к портрету потомка, жившего в XIX веке, можно увидеть, что этот признак передавался из поколения в поколение сквозь столетия и воспроизводился в точности. (Приложение )

    Этим методом выявлены вредные последствия близкородственных браков. В родственных браках вероятность рождения детей с наследственными болезнями и ранняя детская смертность в десятки и даже сотни раз выше средней.

    Сообщение (Приложение ): Родственные связи сгубили династию Габсбургов

    Технически генеалогический метод складывается из двух этапов:

    1) составление родословной схемы;
    2) собственно генеалогический анализ.

    Пробанд – лицо, с которого начинают составление родословной. Поскольку большинство наследственных заболеваний проявляется в детском возрасте, в основном производится расспрос родителей пробанда (чаще всего матери).

    Генеалогический метод относится к наиболее универсальным методам медицинской генетики. Он широко применяется при решении теоретических и прикладных проблем:

    – для установления наследственного характера признака;
    – при определении типа наследования и пенетрантности гена;
    – при анализе сцепления генов и картировании хромосом;
    – при изучении интенсивности мутационного процесса;
    – при расшифровке механизмов взаимодействия генов;
    – при медико-генетическом консультировании.

    Значение: Гeнeaлoгичecким мeтoдoм дoкaзaнo нacлeдoвaниe мнoгиx зaбoлeвaний, нaпpимep caxapнoгo диaбeтa, шизoфpeнии, гeмoфилии и дp.

    Гeнeaлoгичecкий мeтoд иcпoльзyeтcя для диaгнocтики нacлeдcтвeнныx бoлeзнeй и мeдикo-гeнeтичecкoгo кoнcyльтиpoвaния; oн пoзвoляeт ocyщecтвлять гeнeтичecкyю пpoфилaктикy (пpeдyпpeждeниe poждeния бoльнoгo peбeнкa) и paннюю пpoфилaктикy нacлeдcтвeнныx бoлeзнeй.

    Изучение родословных позволило установить, что наследуются не только физические качества, но склонности. Пример – музыкальность семьи Баха.

    Рефлексия после изучения каждого метода: Выступление учащихся с сформулированными ответами в строке таблицы рассматриваемого метода.

    Выступление 2 группы: БЛИЗНЕЦОВЫЙ МЕТОД

    Фрагмент киножурнала «Ералаш» – Тройняшки.

    Близнецовый метод является наиболее распространенным в генетике поведения человека. Метод состоит в изучении различий между однояйцевыми близнецами. Этот метод представлен самой природой. (Примерно в одном из 100 случаев у человека рождаются близнецы). Чтобы лучше представлять себе основы этого метода, сначала поговорим о явлении близнецовости вообще. У некоторых видов животных и человека при овуляции обычно образуется лишь одна яйцеклетка, и в результате рождается только один детеныш. Правда, иногда бывают исключения – одновременно созревают и оплодотворяются две, а иногда три и более яйцеклеток.

    В этом случае рождаются два или более детенышей, а поскольку они происходят из разных оплодотворенных яйцеклеток, или зигот, их называют дизиготными (ДЗ) близнецами, или двойняшками. Если рождается тройня, то правильнее назвать таких детей тризиготными близнецами. ДЗ близнецы не обязательно должны иметь одного отца. Если в период овуляции женщина имела контакт с разными мужчинами, вполне вероятно, что родившиеся ДЗ близнецы будут иметь разных отцов. Такие случаи описаны, в том числе и такие, когда один из младенцев был черным, а другой – белым.

    Не все многоплодные беременности приводят к рождению ДЗ близнецов. В ряде случаев такие беременности приводят к рождению другого типа близнецов. Это монозиготные (МЗ) близнецы. МЗ близнецы принципиально отличаются от ДЗ, т. к. происходят не из разных зигот, а из одной и той же, которая на определенной стадии дробления по непонятным причинам разделилась на два самостоятельных организма. Происхождение МЗ близнецов из одной зиготы предопределяет абсолютную идентичность их генетической конституции. МЗ близнецы – это единственные люди на Земле, обладающие одинаковыми наборами генов. Вот почему они обычно как две капли воды бывают, похожи друг на друга.

    Если разделение эмбриона на два организма произошло не полностью, могут родиться сросшиеся, или сиамские, близнецы. Часто такие близнецы погибают сразу после рождения, но в некоторых случаях выживают и даже могут быть отделены один от другого путем оперативного вмешательства.

    Название «сиамские» такие близнецы получили в честь первой изученной и описанной пары сросшихся близнецов. Это были сросшиеся близнецы Чанг и Энг, родившиеся в Сиаме (Таиланд) в 1811 г. Основную часть своей сознательной жизни они провели в Соединенных Штатах Америки. Оба были женаты и имели детей, один – 12, а другой – 10. Братья прожили 63 года, причем причиной их почти одновременной смерти послужила болезнь одного из братьев.

    Замечено также, что среди рождающихся близнецов преобладают мальчики.

    На 10 млн. родов – одни сиамские близнецы.

    К факторам, способствующим многоплодной беременности, ученые относят:

    • Увеличение возраста матери (старше 30-35 лет)
    • Большое число предшествующих родов
    • Аномалии развития матки (раздвоение матки)
    • Наступление беременности сразу после прекращения использования противозачаточных средств
    • Наступление беременности вследствие употребления лекарств от бесплодия или искусственного оплодотворения
    • Наследственные факторы – близнецы часто рождаются в ряде поколений одной семьи. Причем «поколением» могут выступать одни и те же родители; после рождения первой пары близнецов отмечается склонность к повторению «близнецового» успеха.

    Помимо классического варианта, существует несколько разновидностей близнецового метода, в частности, метод разлученных близнецов, позволяющий наиболее четко разделить наследственные и средовые влияния

    Значение: Изучение развития и заболеваемости близнецов оказало большое влияние на понимание среды возникновения многих болезней. Если какой-то признак имеет сходство у однояйцовых близнецов, то это есть свидетельство его зависимости от наследственности.

    Так в ходе исследований стало известно, что для возникновения таких болезней, как корь, коклюш, ветрянка, оспа необходимо только инфекционное начало; а для появления таких заболеваний, как дифтерия, свинка, воспаление легких, полиомиелит, туберкулез играет роль наследственные свойства организма.

    Близнецы – самый настоящий клад. Недаром в годы второй мировой войны близнецов берегли как государственное сокровище в оккупированной немцами Дании и Швеции. Реестр датских и шведских близнецов охранялся, как золотой фонд.
    Кремлевская рота почетного караула.

    Выступление 3 группы: ЦИТОГЕНЕТИЧЕСКИЙ МЕТОД

    Цитогенетический метод основан на изучении изменчивости и наследственности на уровне клетки и субклеточных структур. Метод позволяет идентифицировать кариотип – особенность строения и число хромосом. Установлена связь ряда тяжелых заболеваний с нарушениями в хромосомах. Цитогенетическое исследование проводится у пробанда, его родителей, родственников или плода при подозрении на хромосомный синдром либо другое хромосомное нарушение.

    Хромосомные нарушения встречаются у 7 из каждой тысячи новорожденных, и они приводят к гибели эмбриона (выкидыш) в первой трети беременности в половине всех случаев. Если ребенок с хромосомными нарушениями рождается живым, то обычно страдает тяжелыми недугами, отстает в умственном и физическом развитии.

    Все хромосомы парные, имеют порядковый номер. Синдром Дауна – трисомия по 21 паре хромосом (1 на 500–600 новорожденных). Характерны: специфическое выражение лица, умственная отсталость, низкий рост, короткие короткопалые руки и ноги. Трисомия по другим аутосомам встречается очень редко, так как приводит к гибели эмбрионов на ранних стадиях развития. Отклонения в числе половых хромосом вызывают серьезные расстройства развития. Среди них синдром Клайнфельтера (1 мальчик на 400–600 новорожденных). Характерно недоразвитие первичных и вторичных половых признаков, искажение пропорций тела. Другая аномалия, встречающаяся у новорожденных девочек 1 на 5000 – синдром Шерешевского – Тернера. 45 хромосом. ХО. (стр. 189 учебника, рисунок 98).

    Показания для цитогенетического обследования больного:

    – множественные пороки развития (с вовлечением трех и более систем); наиболее постоянные нарушения – пороки развития головного мозга, опорно-двигательной системы, сердца и мочеполовой системы;
    – умственная отсталость в сочетании с нарушениями физического развития.
    – стойкое первичное бесплодие у мужчин и у женщин при исключении гинекологической и урологической патологии;
    – привычное невынашивание беременности, особенно на ранних стадиях;
    – нарушение полового развития;
    – небольшая масса ребенка, рожденного при доношенной беременности.

    Значение: результаты метода направлены на уменьшение процента риска по рождению детей с хромосомной патологией (в первую очередь – с синдромом Дауна) для последующего проведения диагностических процедур.

    Выступление 4 группы: ПОПУЛЯЦИОННЫЙ МЕТОД

    Популяционная генетика изучает генетические различия между отдельными группами людей (популяциями), исследует закономерности географического распространения генов. Методы генетики популяций широко применяют в исследованиях человека. Внутрисемейный анализ заболеваемости неотделим от изучения наследственной патологии, как в отдельных странах, так и в относительно изолированных группах населения. Изучение частоты генов и генотипов в популяциях составляет предмет популяционно-генетического исследования. Это дает информацию о степени гетерозиготности и полиморфизма человеческих популяций, выявляет различия частот аллелей между разными популяциями.

    Статистический анализ распространения отдельных наследственных признаков (генов) в популяциях людей в разных странах позволяет определить адаптивную ценность конкретных генотипов. Однажды возникнув, мутации могут передаваться потомству на протяжении многих поколений. Это приводит к полиморфизму (генетической неоднородности) человеческих популяций. Среди населения Земли практически невозможно (за исключением однояйцовых близнецов) найти генетически одинаковых людей. В гетерозиготном состоянии в популяциях находится значительное количество рецессивных аллелей (генетический груз), обусловливающих развитие различных наследственных заболеваний. Частота их возникновения зависит от концентрации рецессивного гена в популяции и значительно повышается при заключении близкородственных браков.

    Значение: метод позволяет изучать распространение отдельных генов или хромосомных аномалий в человеческих популяциях

    Выступление 5 группы: БИОХИМИЧЕСКИЙ МЕТОД

    Этот метод помогает обнаружить целый ряд заболеваний с нарушениями обмена веществ (энзимопатии). Исследованию подлежат кровь, моча, ликвор, пунктаты костного мозга, амниотическая жидкость, сперма, пот, волосы, ногти, кал и др.

    Показания для биохимического исследования:

    – умственная отсталость, психические нарушения;
    – нарушение физического развития – аномальный рост и строение волос или ногтей; неправильный рост с искривлением костей туловища и конечностей, чрезмерное отложение жира, гипотрофия или кахексия, тугоподвижность или разболтанность суставов;
    – плохое зрение или полная слепота, тугоухость или глухота;
    – судороги, мышечная гипотония, гипер-и гипопигментация, фото-чувствительность, желтуха;
    – непереносимость отдельных пищевых продуктов и лекарственных препаратов, нарушение пищеварения, частая рвота, диарея, жидкий стул.
    – почечно-каменная болезнь.
    – гемолитические анемии и др. состояния.

    Значение: C пoмoщью биoxимичecкиx мeтoдoв oткpытo oкoлo 500 мoлeкyляpныx бoлeзнeй, являющиxcя cлeдcтвиeм пpoявлeния мyтaнтныx гeнoв.

    3. Закрепление изученного материала. – Проверка заполнения таблицы.

    4. Проведение рефлексии урока

    Учащиеся оценивают выступление одноклассников, индивидуально свою деятельность на уроке, в группе. Оценивается работа отдельных учащихся.

    Объявляется итог урока: На уроке мы познакомились с основными методами генетики человека, вас ждет следующий этап – провести исследование наследования выбранного признака в 3-4 поколениях ваших родственников. Эта работа закрепить ваши знания в ходе практического применения полученной информации.

    5. Домашнее задание

    – Изучить параграф 39, ответы на вопросы на стр. 192. записи в тетради;
    – Выполнить исследовательскую работу «Изучение наследственной обусловленности изучаемого признака, а также тип его наследования, в моей семье используя генеалогический метод» (срок 1 неделя).

    Используемая литература:

    1. Брусиловский А. И. «Жизнь до рождения», Москва «Знание» 1984
    2. Баев А.А. (ред.). Геном человека, ВИНИТИ, т. 1. М. , 1990.
    3. Бочков Н.П., Чеботарев А.Н. Наследственность человека и мутагены окружающей среды. М. : Медицина, 1989
    4. Ивин М. «Тайники жизни», Ленинград «Детская литература» 1965
    5. Киселёва З.С., Мягкова А.Н. «Генетика», Москва «Просвещение», 1983
    6. Лисицын А.П. «Основы генетики», Москва «Колос», 1972
    7. Тартаковский М.С. «Человек – венец эволюции?», Москва «Знание», 1990
    8. Фогель Ф., Мотульски А. Генетика человека. М. : Мир, 1990.

    Литература для дополнительного чтения:

    1. Н.П. Бочков «Гены и судьбы», М. «Молодая гвардия», 1990г;
    2. Ш.Ауэрбах «Наследственность», М. «Атомиздат», 1969г;
    3. Ю.П.Лаптев «Занимательная генетика» М. «Колос», 1982г;
    4. И.П. Карузина «Биология» М. «Медицина», 1977г;
    5. Н. Дубинин, В. Губарев «Нить жизни» М. «Атомиздат», 1968г;
    6. Н.П. Дубинин «Генетика и человек» М. «Просвещение», 1978г;
    7. З.С. Киселева, А.Н. Мягкова «Методика преподавания факультативного курса по генетике» М. «Просвещение» 1979г.

    11.1. Методы генетики человека

    Обычные генетические методы - изучение потомства от строго контролируемых, направленных скрещиваний, получение мутаций при помощи воздействия мутагенными факторами - в генетике человека неприменимы. Кроме того, определенные трудности при изучении наследственности и изменчивости человека существуют в связи с малочисленным потомством в семьях, сменой поколений через 25 - 30 лет, большим числом (23 у женщин и 24 у мужчин)

    групп сцепления генов. Однако в генетике человека разработаны и успешно используются своеобразные приемы исследования, которые в совокупности дают удовлетворительный результат.

    11.1.1. Генеалогический метод

    Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный, рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предуп­реждения наследственных заболеваний.

    Рис. 11.1. Условные обозначения родословной

    При аутосомном наследовании признак характеризуется равной вероятностью проявления у лиц обоих полов. Различают аутосомно-доминантное и аутосомно-рецессивное наследование.

    При аутосомно-доминантном наследовании доминантный ал­лель реализуется в признак как в гомозиготном, так и в гетерозиготном состоянии. При наличии хотя бы у одного родителя доминантного признака последний с разной вероятностью прояв­ляется во всех последующих поколениях (рис.11.2). Однако для доминантных мутаций характерна низкая пенетрантность. В ряде случаев это создает определенные трудности для определения типа наследования.

    При аутосомно-рецессивном наследовании рецессивный ал­лель реализуется в признак в гомозиготном состоянии. Рецессивные заболевания у детей встречаются чаще при браках между фенотипически нормальными гетерозиготными родителями. У гетерозиготных родителей (Аа х Аа) вероятность рождения больных детей (аа) составит 25%, такой же процент (25%) будут здоровы (АА), остальные 50% (Аа) будут также здоровы, но окажутся гетерозиготными носителями рецессивного аллеля.

    Наследование, сцепленное с Х-хромосомой, может быть доминантным и рецессивным (чаще рецессивным). Рассмотрим Х-сцепленное рецессивное наследование на примере такого заболеваний человека, как гемофилия (нарушение свертывания крови). Известный всему миру пример: носитель гемофилии королева Виктория была гетерозиготной и передала мутантный ген сыну Леопольду и двум дочерям. Эта болезнь проникла в ряд королевских домов Европы и попала в Россию (рис. 11.5).

    11.1.2. Популяционный метод

    Методы генетики популяций широко применяют в исследо­ваниях человека. Внутрисемейный анализ заболеваемости неот­делим от изучения наследственной патологии как в отдельных странах, так и в относительно изолированных группах населения. Изучение частоты генов и генотипов в популяциях составляет предмет популяционно-генетического исследования. Это дает информацию о степени гетерозиготности и полиморфизма чело­веческих популяций, выявляет различия частот аллелей между разными популяциями.

    Считают, что закон Харди - Вайнберга свидетельствует о том, что наследование как таковое не меняет частоты аллелей в популяции. Этот закон вполне пригоден для анализа крупных популяций, где идет свободное скрещивание. Сумма частот аллелей одного гена, согласно формуле Харди - Вайнберга р + q = 1, в генофонде популяции является величиной постоянной. Сумма частот генотипов аллелей данного гена р2 + 2pq + q2= 1 также величина постоянная. При полном доминировании, установив в данной популяции число рецессивных гомозигот (q - число гомозиготных особей по рецессивному гену с генотипом аа), достаточно извлечь квадратный корень из полученной величины, и мы найдем частоту рецессивного аллеля а. Частота доминантного аллеля А составит р = 1 - q. Вычислив таким образом частоты аллелей а и А, можно определить частоты соответствующих генотипов в популяции (р = = АА; 2р# = Аа). Например, по данным ряда ученых, частота альбинизма (наследуется как аутосомный рецессивный признак) составляет 1:20 0*00 (д). Следовательно, частота аллеля а в генофонде будет q = V1/20 ООО = /141 и тогда частота аллеля А будет р = 1 - р = 1 - Vi4i = 140/i4l. В этом случае частота гетерозиготных носителей гена альбинизма (2 pq) составит 2(140/141) (V141) = V70, или 1,4%.

    Статистический анализ распространения отдельных наследст­венных признаков (генов) в популяциях людей в разных странах позволяет определить адаптивную ценность конкретных генотипов. Однажды возникнув, мутации могут передаваться потомству на протяжении многих поколений. Это приводит к полиморфизму (генетической неоднородности) человеческих популяций. Среди населения Земли практически невозможно (за исключением однояйцевых близнецов) найти генетически одинаковых людей. В гетерозиготном состоянии в популяциях находится значительное количество рецессивных аллелей (генетический груз), обус­ловливающих развитие различных наследственных заболеваний. Частота их возникновения зависит от концентрации рецессивного гена в популяции и значительно повышается при заключении близкородственных браков.

    11.1.3. Близнецовый метод

    Этот метод используют в генетике человека для выяснения степени наследственной обусловленности исследуемых признаков. Близнецы могут быть однояйцевыми (образуются на ранних стадиях дробления зиготы, когда из двух или реже из большего числа бластомеров развиваются полноценные организмы). Одно­яйцевые близнецы генетически идентичны. Когда созревают и затем оплодотворяются разными сперматозоидами две или реже большее число яйцеклеток, развиваются разнояйцевые близнецы. Разнояйцевые близнецы сходны между собой не более чем братья и сестры, рожденные в разное время. Частота появления близнецов у людей составляет около 1% (*/з однояйцевых, /з разнояйце­вых); подавляющее большинство близнецов является двойнями.

    Так как наследственный материал однояйцевых близнецов одинаков, то различия, которые возникают у них, зависят от влияния среды на экспрессию генов. Сравнение частоты сходства по ряду признаков пар одно- и разнояйцевых близнецов позволяет оценить значение наследственных и средовых факторов в развитии фенотипа человека.

    11.1.4. Цитогенетический метод

    Цитогенетический метод используют для изучения нормаль­ного кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями. 140

    Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсек­тицидов, лекарственных препаратов и др.

    В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека (см.рис.9.2) состоит из 46 хромосом: 22 пар аутосом и одной пары половых хромосом (XX - у женщин, XY - у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека.

    Цитологический контроль необходим для диагностики хромо­сомных болезней, связанных с анеуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна (трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского - Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови - хроническому миелолейкозу.

    При цитологических исследованиях интерфазных ядер со­матических клеток можно обнаружить так называемое тельце Барра, или половой хроматин (рис.11.6). Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин (см.разд.9.6). Зная эту особенность, можно идентифицировать половую принадлежность

    и выявлять аномальное количество Х-хромосом.

    11.1.5. Биохимический метод

    Наследственные заболевания, которые обусловлены генными мутациями, изменяющими структуру или скорость синтеза белков, обычно сопровождаются нарушением углеводного, белкового, липидного и других типов обмена веществ. Наследственные дефекты обмена можно диагностировать посредством определения структуры измененного белка или его количества, выявления дефектных ферментов или обнаружения промежуточных продуктов обмена веществ во внеклеточных жидкостях организма (крови, моче, поте и т.д.). Например, анализ аминокислотных последо­вательностей мутационно измененных белковых цепей гемоглобина позволил выявить несколько наследственных дефектов, лежащих в основе ряда заболеваний, - гемоглобинозов. Так, при сер­повидно-клеточной анемии у человека аномальный гемоглобин вследствие мутации отличается от нормального заменой только одной аминокислоты (глутаминовой кислоты на валин).

    В практике здравоохранения кроме выявления гомозиготных носителей мутантных генов существуют методы выявления гетерозиготных носителей некоторых рецессивных генов,что осо­бенно важно при медико-генетическом консультировании. Так, у фенотипически нормальных гетерозигот по фенилкетонурии (рецессивный мутантный ген; у гомозигот нарушается обмен аминокислоты фенилаланина, что приводит к умственной отста­лости) после приема фенилаланина обнаруживается повышенное его содержание в крови. При гемофилии гетерозиготное носитель- ство мутантного гена может быть установлено с помощью определения активности фермента, измененного в результате мутации.

    11.2. Медико-генетическое консультирование

    Главные задачи медико-генетического консультирования за­ключаются в прогнозировании вероятности появления детей с той или иной наследственной аномалией. Детальное знакомство с родословными людей, применение разнообразных методов иссле­дования позволяют врачу-генетику оценить степень риска рож­дения больного потомства. Рекомендации, даваемые в медико-ге­нетических консультациях о разумности заключения данного брака, рождения детей, прерывания беременности, направлены на то, чтобы консультируемые лица могли их учитывать и добро­вольно принимать соответствующее решение.

    Врачи не рекомендуют браки между близкими родственниками и между носителями наследственных болезней. В медико-ге­нетические консультации супруги обычно обращаются уже после рождения у них детей с теми ли иными аномалиями и стремятся 142 выяснить возможность появления наследственных дефектов у последующих детей. В некоторых случаях имеется возможность прогноза вероятности рождения второго здорового ребенка.

    В ряде случаев медико-генетическое консультирование может выявить наличие таких наследственных болезней, развитие которых в значительной мере зависит от неблагоприятных воздействий среды. Тогда своевременное проведение профилактических мероприятий может предотвратить их фенотипическое развитие. Так, при генетической предрасположен­ности к ожирению рациональное питание, режим труда и отдыха предотвращают или значительно снижают возникновение такой патологии.

    В распоряжении врачей имеется весь арсенал рассмотренных выше методов генетики человека и ряд других методов, что позволяет не только лучше понять природу наследственных заболеваний, характер их наследования, но и прогнозировать степень риска рождения больных потомков, а также быстро диагностировать и лечить больных. Раннее выявление фенилке- тонурии и назначение диеты с ограниченным количеством фенилаланина предотвращает возникновение повреждений в цен­тральной нервной системе и появление наиболее тяжелых симптомов этого заболевания.

    Генеалогический метод состоит в изучении родословных на основе менделевских законов наследования и пoмoгaeт установить характер наследования признака (доминантный или рецессивный). Так устанавливают наследование индивидуальных особенностей человека: черт лица, роста, группы крови, умственного и психического склада, а также некоторых заболеваний. Например, при изучении родословной королевской династии Габсбургов в нескольких поколениях прослеживаются выпяченная нижняя губа и нос с горбинкой. Этим методом выявлены вредные последствия близкородственных браков, которые особенно проявляются при гомозиготности по одному и тому же неблагоприятному рецессивному аллелю. В родственных браках вероятность рождения детей с наследственными болезнями и ранняя детская смертность в десятки и даже сотни раз выше средней.

    Составила А.А. Медведева

    Близнецовый метод состоит в изучении различий между однояйцевыми близнецами. Этот мeтoд предоставлен самой природой. Он помогает выявить влияние условий среды на фенотип при одинаковых генотипах. Выросшие в одинаковых условиях однояйцевые близнецы имеют поразительное сходство не только в морфологических признаках, но и в психических и интеллектуальных особенностях. С помощью близнецового метода выявлена роль наследственности в ряде заболеваний.

    Популяционный метод. Популяционная генетика изучает генетические различия между отдельными группами людей (популяциями), исследует закономерности географического распространения генов.

    Цитогенетический метод основан на изучении изменчивости и наследственности на уровне клетки и субклеточных структур. Установлена связь ряда тяжелых заболеваний с нарушениями в хромосомах. Хpoмocoмные нарушения встречаются у 7 из каждой тысячи новорожденных, и они же приводят к гибели эмбриона (выкидыш) в первой трети беременности в половине всех случаев. Если ребенок с хромосомными нарушениями рождается живым, то обычно страдает тяжелыми недугами, отстает в умственном и физическом развитии.

    Биохимический метод позволяет выявить многие наследственные болезни человека, связанные с нарушением обмена веществ. Известны аномалии углеводного, аминокислотного, липидного и других типов обмена веществ. Так, например, сахарный диабет обусловлен нарушением нормальной деятельности поджелудочной железы – она не выделяет в кровь необходимое количество гормона инсулина, в результате чего повышается содержание сахара в крови. Это нарушение вызывается не одной грубой ошибкой в генетической информации, а целым набором небольших ошибок, которые все вместе приводят или предрасполагают к заболеванию.

    Вывод

    Законы Менделя применимы к человеку. Однако при изучении генетики человека возникают определенные трудности, вызванные:

    – невозможностью применения основного генетического метода контрольных скрещиваний; – редкой сменой поколений; – малочисленным потомством; – большим числом хромосом; – поздним половым созреванием.

    С другой стороны, строение и физиология человека изучены гораздо полнее, чем у растений и животных; изучены многие наследственные болезни.

    28. Изменчивость. Виды изменчивости. Модификационная изменчивость.

    Виды изменчивости.

    Всеобщее свойство живых организмов приобретать отличия от особей как других видов, так и своего вида называют изменчивостью. Конечно, однояйцевые близнецы очень похожи, но всегда есть хотя бы одна родинка, которая их отличает. А если, к примеру, один из близнецов увлекается культуризмом, а другой - шахматами, то различия в их фенотипе будут выражены очень заметно.

    Различают два вида изменчивости: модификационную (фенотипическую) и наследственную (генотипическую).

    Модификационная изменчивость.

    Все признаки живого организма определяются комбинацией генов, составляющих генотип этого организма.

    Однако гены постоянно испытывают воздействия со стороны внешней среды, и степень проявления действия генов может быть различной.

    Если путем вегетативного размножения получить несколько кустов, например, крыжовника из одного, «родительского» куста, то генотипы новых кустов будут абсолютно одинаковы.

    Однако фенотипы их обязательно будут отличаться. Эти различия в числе и размере листьев, длине стеблей и т, п, будут вызваны различной степенью воздействия факторов внешней среды: влажности, освещенности, качества почвы.

    Такие изменения признаков организма, которые не затрагивают его гены и не могут передаваться следующим поколениям, называются модификационными, а этот вид изменчивости - модификационной. Чаще всего модификациям подвержены количественные признаки - рост, вес, плодовитость и т.п.

    Классическим примером модификационной изменчивости может служить изменчивость формы листьев у растения стрелолиста, укореняющегося под водой. У одной особи стрелолиста бывают три вида листьев (рис. 65), в зависимости от того, где лист развивается: под водой, на поверхности или на воздухе. Эти различия в форме листьев определяются степенью их освещенности, а набор генов в клетках каждого листа одинаков. Для различных признаков и свойств организма характерна большая или меньшая зависимость от условий окружающей среды. Например, у человека цвет радужки и группа крови определяется только соответствующими генами, и условия жизни на эти признаки влиять не могут. А вот рост, вес, физическая выносливость сильно зависят от внешних условий, например от качества питания , физической нагрузки и др. Пределы модификационной изменчивости какого-либо признака называют нормой реакции. Норма реакции обусловлена генетически и наследуется.

    Изменчивость признака иногда бывает очень большой, но она не может выходить за пределы нормы реакции. У одних признаков норма реакции очень широка (например, настриг шерсти с овец, молочность коров), а другие признаки характеризуются узкой нормой реакции (окрас шерсти у кроликов).

    Из сказанного выше следует очень важный вывод. Наследуется не сам признак, а способность проявлять этот признак в определенных условиях, иными словами, наследуется норма реакции организма на внешние условия.

    Итак, можно перечислить следующие основные характеристики модификационной изменчивости:

    Модификационные изменения не передаются потомкам; - модификационные изменения возникают у многих особей вида и зависят от воздействия окружающей среды; - модификационные изменения возможны только в пределах нормы реакции, т. е. в конечном счете они определяются генотипом.

    Наследственная изменчивость.

    Наследственная изменчивость обусловлена изменениями в генетическом материале и является основой разнообразия живых организмов, а также главной причиной эволюционного процесса, так как она поставляет материал для естественного отбора.

    Наследственная изменчивость проявляется в двух формах - ком- бинативной и мутационной.

    В основе комбинативной изменчивости лежит половой процесс, в результате которого возникает огромный набор разнообразных генотипов.

    В клетках каждого человека содержится 23 материнских и 23 отцовских хромосомы . При образовании гамет в каждую из них попадут лишь 23 хромосомы, и сколько из них будет от отца и сколько от матери _ дело случая, В этом и кроется первый источник комбинативной изменчивости.

    Вторая ее причина - кроссинговер.

    Мало того что каждая наша клетка несет хромосомы дедушек и бабушек, определенная часть этих хромосом получила в результате кроссинговера часть своих генов от гомологичных хромосом, принадлежавших ранее другой линии предков. Такие хромосомы называют рекомбинантньши. Участвуя в формировании организма нового поколения, они приводят к неожиданным комбинациям признаков, которых не было ни у отцовского, ни у материнского организма.

    Наконец, третья причина комбинативной изменчивости - случайный характер встреч тех или иных гамет в процессе оплодотворения.

    Все три процесса, лежащие в основе комбинативной изменчивости, действуют независимо друг от друга, создавая огромное разнообразие всевозможнейших генотипов.

    Возникновение изменений в наследственном материале, т. е, в молекулах ДНК , называют мутационной изменчивостью. Причем изменения могут происходить как в отдельных молекулах (хромосомах), так и в числе этих молекул. Мутации происходят под влиянием разнообразных факторов внешней и внутренней среды.

    Впервые термин «мутация» был предложен в 1901 г. голландским ученым Г. де Фризом, описавшим самопроизвольные мутации у растений. Мутации появляются редко, но приводят к внезапным скачкообразным изменениям признаков, передающихся из поколения в поколение.

    Введение

    Генетика человека и такие фундаментальные дисциплины, как анатомия, физиология, биохимия, составляют основу современной медицины. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

    Наследственность и изменчивость у человека являются предметом изучения генетики человека на всех уровнях его организации: молекулярном, клеточном, организменном, популяционном. Генетика человека своими успехами в значительной мере обязана медицинской генетике - науке, изучающей роль наследственности в патологии человека. Прикладной раздел медицинской генетики - это клиническая генетика, которая использует достижения медицинской генетики, генетики человека и общей генетики в решении клинических проблем, возникающих у людей.

    Генетика представляет собой одну из наиболее сложных дисциплин современного естествознания. Чтобы разобраться в ней глубоко, в своей работе я рассмотрю основные этапы развития генетики, виды генетики, достижения генетики в современной медицине и т.д.


    1. История развития генетики

    Генетика – это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы.

    Первый научный шаг в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью «Опыты над растительными гибридами», заложившую основы современной генетики.

    До открытий Менделя признавалась теория так называемой слитной наследственности. Суть этой теории состояла в том, что при оплодотворении мужское и женское «начало» перемешивались, «как краски в стакане воды», давая начало новому организму. Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленных) единиц. Эти единицы, представленные у особей парами (аллелями), остаются дискретными и передаются последующим поколениям в мужских и женских гаметах, каждая из которых содержит по одной единице из каждой пары. В 1909 г. датский ботаник-селекционер В. Иогансен назвал их «генами», а в 1912 г. американский генетик Т. Г. Морган показал, что они находятся в хромосомах.

    Официальной датой рождения генетики считают 1900 год. Тогда были опубликованы данные Г. де Фриза, К. Корренса и К.Чермака, переоткрывших закономерности наследования признаков, установленные Г.Менделем. Первые десятилетия 20-го века оказались плодотворными в развитии основных положений и направлений генетики. Было сформулировано представление о мутациях, популяциях и чистых линиях организмов, хромосомная теория наследственности, открыт закон гомологических рядов, получены данные о возникновении наследственных изменений под действием рентгеновских лучей, была начата разработка основ генетики популяций организмов.

    В 1953 году в международном научном журнале была напечатана статья биологов Джеймса Уотсона и Френсиса Крика о строении дезоксирибонуклеиновой кислоты – ДНК.

    Структура ДНК оказалась совершенно необычной: её молекулы имеют огромную по молекулярным масштабам длину и состоят из двух нитей, сплетённых между собой в двойную спираль. Каждую из нитей можно сравнить с длинной нитью бус. У белков "бусинами" являются аминокислоты двадцати различных типов. У ДНК – всего четыре типа "бусин", и зовутся они нуклеотидами. "Бусины" двух нитей двойной спирали ДНК связаны между собой и строго друг другу соответствуют. В ДНК напротив нуклеотида аденина находится тимин, напротив цитозина – гуанин. При таком построении двойной спирали каждая из цепей содержит сведения о строении другой. Зная строение одной цепи, всегда можно восстановить другую.

    Получаются две двойные спирали – точные копии их предшественницы. Это свойство точно копировать себя имеет ключевое значение для жизни на Земле.


    2. Генетика и медицина

    2.1 Методы исследования

    В генетике основным методом исследования является генетический анализ, который проводится на всех уровнях организации живого (от молекулярного до популяционного). В зависимости от цели исследования "видоизменяется" в частные методы - гибридологический, популяционный, мутационный, рекомбинационный, цитогенетический и др.

    Гибридологический метод позволяет установить закономерности наследования отдельных признаков и свойств организма путем проведения серии прямых или возвратных скрещиваний в ряде поколений. Закономерности наследования признаков и свойств у человека устанавливают, используя генеалогический метод (анализ родословных). Законы наследования признака в популяциях определяют с помощью популяционного метода, или популяционного анализа.

    Цитогенетический метод, объединивший принципы цитологического и генетического анализа, применяют при изучении закономерностей материальной преемственности в поколениях отдельных клеток и организмов и "анатомии" материальных носителей наследственности.

    Феногенетический анализ позволяет изучать действие гена и проявления генов в индивидуальном развитии организма. Для этого используют такие приемы, как пересадка генетически различных тканей, клеточных ядер или отдельных генов из одной клетки в другую, а также исследование так химер - экспериментально полученных многоклеточных организмов, состоящих из генетически различных клеток, исходно принадлежащих разным индивидуумам.

    Мутационный и рекомбинационный анализ используют при изучении тонкой организации и функции генетического материала, структуры различных ДНК, их изменений, механизмов функционирования и обмена генами при скрещивании. Интенсивно развивается метод молекулярного генетического анализа.

    2.2 Интерес медицины

    С развитием генетики стало возможным применение её методов в исследовании неизлечимых ранее болезней, патологий и т.д. Что начало привлекать немалый интерес со стороны ученых, работающих в области медицины. Известно несколько тысяч генетических заболеваний, которые почти на 100% зависят от генотипа особи. К наиболее страшным из них относятся: кислотный фиброз поджелудочной железы, фенилкетонурия, галактоземия, различные формы кретинизма, гемоглобинопатии, а также синдромы Дауна, Тернера, Кляйнфельтера. Кроме того, существуют заболевания, которые зависят и от генотипа, и от среды: ишемическая болезнь, сахарный диабет, ревматоидные заболевания, язвенные болезни желудка и двенадцатиперстной кишки, многие онкологические заболевания, шизофрения и другие заболевания психики.

    Исторически интерес медицины к генетике формировался первоначально в связи с наблюдениями за наследуемыми патологическими (болезненными) признаками. Во второй половине 19-го века английский биолог Ф.Гальтон выделил как самостоятельный предмет исследования «наследственность человека». Он же предложил ряд специальных методов генетического анализа: генеалогический, близнецовый, статистический. Изучение закономерностей наследования нормальных и патологических признаков и сейчас занимает ведущее место в генетике человека.

    2.3 Генетика человека

    Генетика человека (human genetics) – это особый раздел генетики, который изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Из направлений генетики человека наиболее интенсивно развиваются цитогенетика, биохимическая генетика, иммуногенетика, генетика высшей нервной деятельности, физиологическая генетика.

    Генетика человека является теоретической основой современной медицины и современного здравоохранения. Её подразделяют на антропогенетику, изучающую закономерности наследственности и изменчивости нормальных признаков человеческого организма, демографическую генетику (генетика народонаселения), экологическая генетику (учение о генетических аспектах взаимоотношений человека с окружающей средой) и генетику медицинскую, которая изучает наследственные патологии (болезни, дефекты, уродства и др.).

    Наиболее важной областью генетики человека является медицинская генетика. Медицинская генетика помогает понять взаимодействие биологических и факторов среды в патологии человека. Иногда ее рассматривают не как раздел генетики человека, а как самостоятельную область общей генетики.

    2.4 Медицинская генетика

    Медицинская генетика изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных (физических, творческих, интеллектуальных способностей) и патологических признаков, зависимость заболеваний от генетической предопределенности и условий окружающей среды, в том числе от социальных условий жизни. А также разрабатывает системы диагностики, лечения, профилактики и реабилитации, больных наследственными болезнями и диспансеризации их семей, изучает роль и механизмы наследственной предрасположенности при заболеваниях человека.

    Формирование медицинской генетики началось в 30-е гг. XX века, когда стали появляться факты, подтверждающие, что наследование признаков у человека подчиняется тем же закономерностям, что и у других живых организмов.

    Задачей медицинской генетики является выявление, изучение, профилактика и лечение наследственных болезней, а также разработка путей предотвращения воздействия факторов среды на наследственность человека.

    Основным разделом медицинской генетики является клиническая генетика, которая изучает этиологию и патогенез наследственных болезней, изменчивость клинических проявлений и течения наследственной патологии и болезней, характеризующихся наследственным предрасположением, в зависимости от влияния генетических факторов и факторов окружающей среды, а также разрабатывает методы диагностики, лечения и профилактики этих болезней. Клиническая генетика включает в себя нейрогенетику, дерматогенетику (изучающую наследственные заболевания кожи - генодерматозы), офтальмогенетику, фармакогенетику (изучающую наследственно обусловленные реакции организма на лекарственные средства). Медицинская генетика связана со всеми разделами современной клинической медицины и другими областями медицины и здравоохранения, в том числе, с биохимией, физиологией, морфологией, общей патологией, иммунологией.